Spaces:
No application file
No application file
import torch.nn as nn | |
class Generator(nn.Module): | |
def __init__(self, z_dim=100, img_channels=3): | |
super(Generator, self).__init__() | |
self.gen = nn.Sequential( | |
# input is Z, going into a convolution | |
nn.ConvTranspose2d(z_dim, 512, 4, 1, 0, bias=False), | |
nn.BatchNorm2d(512), | |
nn.ReLU(True), | |
# state size. 512 x 4 x 4 | |
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(256), | |
nn.ReLU(True), | |
# state size. 256 x 8 x 8 | |
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(128), | |
nn.ReLU(True), | |
# state size. 128 x 16 x 16 | |
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(64), | |
nn.ReLU(True), | |
# state size. 64 x 32 x 32 | |
nn.ConvTranspose2d(64, img_channels, 4, 2, 1, bias=False), | |
nn.Tanh() | |
# state size. img_channels x 64 x 64 | |
) | |
def forward(self, input): | |
return self.gen(input) | |
class Discriminator(nn.Module): | |
def __init__(self, img_channels=3): | |
super(Discriminator, self).__init__() | |
self.disc = nn.Sequential( | |
# input is img_channels x 64 x 64 | |
nn.Conv2d(img_channels, 64, 4, 2, 1, bias=False), | |
nn.LeakyReLU(0.2, inplace=True), | |
# state size. 64 x 32 x 32 | |
nn.Conv2d(64, 128, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(128), | |
nn.LeakyReLU(0.2, inplace=True), | |
# state size. 128 x 16 x 16 | |
nn.Conv2d(128, 256, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(256), | |
nn.LeakyReLU(0.2, inplace=True), | |
# state size. 256 x 8 x 8 | |
nn.Conv2d(256, 512, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(512), | |
nn.LeakyReLU(0.2, inplace=True), | |
# state size. 512 x 4 x 4 | |
nn.Conv2d(512, 1, 4, 1, 0, bias=False), | |
nn.Sigmoid() | |
) | |
def forward(self, input): | |
return self.disc(input).view(-1, 1).squeeze(1) | |
batch_size = 32 | |
latent_vector_size = 100 | |
generator = Generator() | |
discriminator = Discriminator() | |
generator.load_state_dict(torch.load('netG.pth', map_location=torch.device('cpu') )) | |
discriminator.load_state_dict(torch.load('netD.pth', map_location=torch.device('cpu') )) | |