|
import gradio as gr |
|
import jax |
|
from flax.jax_utils import replicate |
|
from flax.training.common_utils import shard |
|
from diffusers import FlaxStableDiffusionPipeline |
|
|
|
pipeline, pipeline_params = FlaxStableDiffusionPipeline.from_pretrained( |
|
"bguisard/stable-diffusion-nano", |
|
) |
|
|
|
|
|
def generate_image(prompt: str, inference_steps: int = 30, prng_seed: int = 0): |
|
rng = jax.random.PRNGKey(int(prng_seed)) |
|
rng = jax.random.split(rng, jax.device_count()) |
|
p_params = replicate(pipeline_params) |
|
|
|
num_samples = 1 |
|
prompt_ids = pipeline.prepare_inputs([prompt] * num_samples) |
|
prompt_ids = shard(prompt_ids) |
|
|
|
images = pipeline( |
|
prompt_ids=prompt_ids, |
|
params=p_params, |
|
prng_seed=rng, |
|
height=128, |
|
width=128, |
|
num_inference_steps=int(inference_steps), |
|
jit=True, |
|
).images |
|
|
|
images = images.reshape((num_samples,) + images.shape[-3:]) |
|
images = pipeline.numpy_to_pil(images) |
|
return images |
|
|
|
|
|
prompt_input = gr.inputs.Textbox( |
|
label="Prompt", placeholder="A watercolor painting of a bird" |
|
) |
|
inf_steps_input = gr.inputs.Slider( |
|
minimum=1, maximum=100, default=30, step=1, label="Inference Steps" |
|
) |
|
seed_input = gr.inputs.Number(default=0, label="Seed") |
|
|
|
app = gr.Interface( |
|
fn=generate_image, |
|
inputs=[prompt_input, inf_steps_input, seed_input], |
|
outputs=gr.Image(shape=(128, 128)), |
|
title="Stable Diffusion Nano", |
|
description=( |
|
"Based on stable diffusion and fine-tuned on 128x128 images, " |
|
"Stable Diffusion Nano allows for fast prototyping of diffusion models, " |
|
"enabling quick experimentation with easily available hardware." |
|
), |
|
examples=[["A watercolor painting of a bird", 30, 0]], |
|
) |
|
|
|
app.launch() |
|
|