Textgen / app.py
Funbi's picture
Update app.py
4f3f739
raw
history blame
1.59 kB
import os
os.system("pip install transformers")
os.system("pip install gradio==3.11")
os.system("pip install tensorflow")
os.system("pip install torch")
import gradio as gr
#import tensorflow as tf
#from transformers import GPT2LMHeadModel, GPT2Tokenizer, set_seed
#tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")
#model = GPT2LMHeadModel.from_pretrained("gpt2-large", pad_token_id=tokenizer.eos_token_id)
from transformers import pipeline
def generate(prompt,textCount=40):
if textCount == None or textCount < 40:
textCount = 40
generator = pipeline('text-generation', model="facebook/opt-1.3b", do_sample=True, num_return_sequences=2, max_length=textCount)
out = generator(prompt)
bout = f"{out[0]['generated_text']} \n {out[1]['generated_text']}"
return bout
demo = gr.Interface(
fn=generate,
inputs=[gr.Textbox(lines=8, placeholder="Paragraph Here..."),"number"],
outputs="text",title="Text generation app with Facebook opt",
description="This is a text generation app, it can prove useful when you want to generate texts. All you need to do is copy and paste a short prompt. The potential of this app is limitless especially for writers, you are only limited by your prompt engineering skills",
examples=[
["During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in"
],["Question: What hurdles or challenges are you facing as you move through your career journey? Please share a specific example?answer:I have been"]
],
)
demo.launch()