File size: 2,304 Bytes
2101990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
# Load the Hugging Face token from environment variables
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("Hugging Face token not found in environment variables.")
# Load the tokenizer and model
model_name = "sander-wood/music-transformer"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
# Move the model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Function to generate music
def generate_music(input_text, max_length=512, temperature=0.9, top_p=0.95):
"""
Generate music based on the input text.
"""
# Tokenize the input
inputs = tokenizer(input_text, return_tensors="pt").to(device)
# Generate music
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
# Decode the generated output
generated_music = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_music
# Gradio interface
def gradio_interface(input_text, max_length, temperature, top_p):
"""
Gradio interface for generating music.
"""
generated_music = generate_music(input_text, max_length, temperature, top_p)
return generated_music
# Define Gradio inputs and outputs
inputs = [
gr.Textbox(label="Input Text", placeholder="Enter a music description..."),
gr.Slider(minimum=64, maximum=1024, value=512, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p"),
]
outputs = gr.Textbox(label="Generated Music (ABC Notation)")
# Create the Gradio app
app = gr.Interface(
fn=gradio_interface,
inputs=inputs,
outputs=outputs,
title="Music Transformer",
description="Generate music in ABC notation using the sander-wood/music-transformer model.",
)
# Launch the app
app.launch(server_name="0.0.0.0", server_port=7860) |