Francke's picture
t
24c345c
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import imageio
import numpy as np
import json
from typing import Union
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torch.distributed as dist
from torchvision import transforms
from tqdm import tqdm
from einops import rearrange
import cv2
from decord import AudioReader, VideoReader
import shutil
import subprocess
# Machine epsilon for a float32 (single precision)
eps = np.finfo(np.float32).eps
def read_json(filepath: str):
with open(filepath) as f:
json_dict = json.load(f)
return json_dict
def read_video(video_path: str, change_fps=True, use_decord=True):
if change_fps:
temp_dir = "temp"
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir, exist_ok=True)
command = (
f"ffmpeg -loglevel error -y -nostdin -i {video_path} -r 25 -crf 18 {os.path.join(temp_dir, 'video.mp4')}"
)
subprocess.run(command, shell=True)
target_video_path = os.path.join(temp_dir, "video.mp4")
else:
target_video_path = video_path
if use_decord:
return read_video_decord(target_video_path)
else:
return read_video_cv2(target_video_path)
def read_video_decord(video_path: str):
vr = VideoReader(video_path)
video_frames = vr[:].asnumpy()
vr.seek(0)
return video_frames
def read_video_cv2(video_path: str):
# Open the video file
cap = cv2.VideoCapture(video_path)
# Check if the video was opened successfully
if not cap.isOpened():
print("Error: Could not open video.")
return np.array([])
frames = []
while True:
# Read a frame
ret, frame = cap.read()
# If frame is read correctly ret is True
if not ret:
break
# Convert BGR to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame_rgb)
# Release the video capture object
cap.release()
return np.array(frames)
def read_audio(audio_path: str, audio_sample_rate: int = 16000):
if audio_path is None:
raise ValueError("Audio path is required.")
ar = AudioReader(audio_path, sample_rate=audio_sample_rate, mono=True)
# To access the audio samples
audio_samples = torch.from_numpy(ar[:].asnumpy())
audio_samples = audio_samples.squeeze(0)
return audio_samples
def write_video(video_output_path: str, video_frames: np.ndarray, fps: int):
height, width = video_frames[0].shape[:2]
out = cv2.VideoWriter(video_output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
# out = cv2.VideoWriter(video_output_path, cv2.VideoWriter_fourcc(*"vp09"), fps, (width, height))
for frame in video_frames:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame)
out.release()
def init_dist(backend="nccl", **kwargs):
"""Initializes distributed environment."""
rank = int(os.environ["RANK"])
num_gpus = torch.cuda.device_count()
if num_gpus == 0:
raise RuntimeError("No GPUs available for training.")
local_rank = rank % num_gpus
torch.cuda.set_device(local_rank)
dist.init_process_group(backend=backend, **kwargs)
return local_rank
def zero_rank_print(s):
if dist.is_initialized() and dist.get_rank() == 0:
print("### " + s)
def zero_rank_log(logger, message: str):
if dist.is_initialized() and dist.get_rank() == 0:
logger.info(message)
def make_audio_window(audio_embeddings: torch.Tensor, window_size: int):
audio_window = []
end_idx = audio_embeddings.shape[1] - window_size + 1
for i in range(end_idx):
audio_window.append(audio_embeddings[:, i : i + window_size, :])
audio_window = torch.stack(audio_window)
audio_window = rearrange(audio_window, "f b w d -> b f w d")
return audio_window
def check_video_fps(video_path: str):
cam = cv2.VideoCapture(video_path)
fps = cam.get(cv2.CAP_PROP_FPS)
if fps != 25:
raise ValueError(f"Video FPS is not 25, it is {fps}. Please convert the video to 25 FPS.")
def tailor_tensor_to_length(tensor: torch.Tensor, length: int):
if len(tensor) == length:
return tensor
elif len(tensor) > length:
return tensor[:length]
else:
return torch.cat([tensor, tensor[-1].repeat(length - len(tensor))])
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c f h w -> f b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def interpolate_features(features: torch.Tensor, output_len: int) -> torch.Tensor:
features = features.cpu().numpy()
input_len, num_features = features.shape
input_timesteps = np.linspace(0, 10, input_len)
output_timesteps = np.linspace(0, 10, output_len)
output_features = np.zeros((output_len, num_features))
for feat in range(num_features):
output_features[:, feat] = np.interp(output_timesteps, input_timesteps, features[:, feat])
return torch.from_numpy(output_features)
# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
uncond_input = pipeline.tokenizer(
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, return_tensors="pt"
)
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
text_input = pipeline.tokenizer(
[prompt],
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
context = torch.cat([uncond_embeddings, text_embeddings])
return context
def reversed_forward(ddim_scheduler, pred_noise, timesteps, x_t):
# Compute alphas, betas
alpha_prod_t = ddim_scheduler.alphas_cumprod[timesteps]
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if ddim_scheduler.config.prediction_type == "epsilon":
beta_prod_t = beta_prod_t[:, None, None, None, None]
alpha_prod_t = alpha_prod_t[:, None, None, None, None]
pred_original_sample = (x_t - beta_prod_t ** (0.5) * pred_noise) / alpha_prod_t ** (0.5)
else:
raise NotImplementedError("This prediction type is not implemented yet")
# Clip "predicted x_0"
if ddim_scheduler.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
return pred_original_sample
def next_step(
model_output: Union[torch.FloatTensor, np.ndarray],
timestep: int,
sample: Union[torch.FloatTensor, np.ndarray],
ddim_scheduler,
):
timestep, next_timestep = (
min(timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999),
timestep,
)
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next**0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(latents, t, context, unet):
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
context = init_prompt(prompt, pipeline)
uncond_embeddings, cond_embeddings = context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(num_inv_steps)):
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
latent = next_step(noise_pred, t, latent, ddim_scheduler)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
return ddim_latents
def plot_loss_chart(save_path: str, *args):
# Creating the plot
plt.figure()
for loss_line in args:
plt.plot(loss_line[1], loss_line[2], label=loss_line[0])
plt.xlabel("Step")
plt.ylabel("Loss")
plt.legend()
# Save the figure to a file
plt.savefig(save_path)
# Close the figure to free memory
plt.close()
CRED = "\033[91m"
CEND = "\033[0m"
def red_text(text: str):
return f"{CRED}{text}{CEND}"
log_loss = nn.BCELoss(reduction="none")
def cosine_loss(vision_embeds, audio_embeds, y):
sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds)
# sims[sims!=sims] = 0 # remove nan
# sims = sims.clamp(0, 1)
loss = log_loss(sims.unsqueeze(1), y).squeeze()
return loss
def save_image(image, save_path):
# input size (C, H, W)
image = (image / 2 + 0.5).clamp(0, 1)
image = (image * 255).to(torch.uint8)
image = transforms.ToPILImage()(image)
# Save the image copy
image.save(save_path)
# Close the image file
image.close()
def gather_loss(loss, device):
# Sum the local loss across all processes
local_loss = loss.item()
global_loss = torch.tensor(local_loss, dtype=torch.float32).to(device)
dist.all_reduce(global_loss, op=dist.ReduceOp.SUM)
# Calculate the average loss across all processes
global_average_loss = global_loss.item() / dist.get_world_size()
return global_average_loss
def gather_video_paths_recursively(input_dir):
print(f"Recursively gathering video paths of {input_dir} ...")
paths = []
gather_video_paths(input_dir, paths)
return paths
def gather_video_paths(input_dir, paths):
for file in sorted(os.listdir(input_dir)):
if file.endswith(".mp4"):
filepath = os.path.join(input_dir, file)
paths.append(filepath)
elif os.path.isdir(os.path.join(input_dir, file)):
gather_video_paths(os.path.join(input_dir, file), paths)
def count_video_time(video_path):
video = cv2.VideoCapture(video_path)
frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT)
fps = video.get(cv2.CAP_PROP_FPS)
return frame_count / fps