Spaces:
Running
Running
File size: 10,224 Bytes
24c345c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torchvision import transforms
import cv2
from einops import rearrange
import mediapipe as mp
import torch
import numpy as np
from typing import Union
from .affine_transform import AlignRestore, laplacianSmooth
import face_alignment
"""
If you are enlarging the image, you should prefer to use INTER_LINEAR or INTER_CUBIC interpolation. If you are shrinking the image, you should prefer to use INTER_AREA interpolation.
https://stackoverflow.com/questions/23853632/which-kind-of-interpolation-best-for-resizing-image
"""
def load_fixed_mask(resolution: int) -> torch.Tensor:
mask_image = cv2.imread("latentsync/utils/mask.png")
mask_image = cv2.cvtColor(mask_image, cv2.COLOR_BGR2RGB)
mask_image = cv2.resize(mask_image, (resolution, resolution), interpolation=cv2.INTER_AREA) / 255.0
mask_image = rearrange(torch.from_numpy(mask_image), "h w c -> c h w")
return mask_image
class ImageProcessor:
def __init__(self, resolution: int = 512, mask: str = "fix_mask", device: str = "cpu", mask_image=None):
self.resolution = resolution
self.resize = transforms.Resize(
(resolution, resolution), interpolation=transforms.InterpolationMode.BILINEAR, antialias=True
)
self.normalize = transforms.Normalize([0.5], [0.5], inplace=True)
self.mask = mask
if mask in ["mouth", "face", "eye"]:
self.face_mesh = mp.solutions.face_mesh.FaceMesh(static_image_mode=True) # Process single image
if mask == "fix_mask":
self.face_mesh = None
self.smoother = laplacianSmooth()
self.restorer = AlignRestore()
if mask_image is None:
self.mask_image = load_fixed_mask(resolution)
else:
self.mask_image = mask_image
if device != "cpu":
self.fa = face_alignment.FaceAlignment(
face_alignment.LandmarksType.TWO_D, flip_input=False, device=device
)
self.face_mesh = None
else:
# self.face_mesh = mp.solutions.face_mesh.FaceMesh(static_image_mode=True) # Process single image
self.face_mesh = None
self.fa = None
def detect_facial_landmarks(self, image: np.ndarray):
height, width, _ = image.shape
results = self.face_mesh.process(image)
if not results.multi_face_landmarks: # Face not detected
raise RuntimeError("Face not detected")
face_landmarks = results.multi_face_landmarks[0] # Only use the first face in the image
landmark_coordinates = [
(int(landmark.x * width), int(landmark.y * height)) for landmark in face_landmarks.landmark
] # x means width, y means height
return landmark_coordinates
def preprocess_one_masked_image(self, image: torch.Tensor) -> np.ndarray:
image = self.resize(image)
if self.mask == "mouth" or self.mask == "face":
landmark_coordinates = self.detect_facial_landmarks(image)
if self.mask == "mouth":
surround_landmarks = mouth_surround_landmarks
else:
surround_landmarks = face_surround_landmarks
points = [landmark_coordinates[landmark] for landmark in surround_landmarks]
points = np.array(points)
mask = np.ones((self.resolution, self.resolution))
mask = cv2.fillPoly(mask, pts=[points], color=(0, 0, 0))
mask = torch.from_numpy(mask)
mask = mask.unsqueeze(0)
elif self.mask == "half":
mask = torch.ones((self.resolution, self.resolution))
height = mask.shape[0]
mask[height // 2 :, :] = 0
mask = mask.unsqueeze(0)
elif self.mask == "eye":
mask = torch.ones((self.resolution, self.resolution))
landmark_coordinates = self.detect_facial_landmarks(image)
y = landmark_coordinates[195][1]
mask[y:, :] = 0
mask = mask.unsqueeze(0)
else:
raise ValueError("Invalid mask type")
image = image.to(dtype=torch.float32)
pixel_values = self.normalize(image / 255.0)
masked_pixel_values = pixel_values * mask
mask = 1 - mask
return pixel_values, masked_pixel_values, mask
def affine_transform(self, image: torch.Tensor) -> np.ndarray:
# image = rearrange(image, "c h w-> h w c").numpy()
if self.fa is None:
landmark_coordinates = np.array(self.detect_facial_landmarks(image))
lm68 = mediapipe_lm478_to_face_alignment_lm68(landmark_coordinates)
else:
detected_faces = self.fa.get_landmarks(image)
if detected_faces is None:
raise RuntimeError("Face not detected")
lm68 = detected_faces[0]
points = self.smoother.smooth(lm68)
lmk3_ = np.zeros((3, 2))
lmk3_[0] = points[17:22].mean(0)
lmk3_[1] = points[22:27].mean(0)
lmk3_[2] = points[27:36].mean(0)
# print(lmk3_)
face, affine_matrix = self.restorer.align_warp_face(
image.copy(), lmks3=lmk3_, smooth=True, border_mode="constant"
)
box = [0, 0, face.shape[1], face.shape[0]] # x1, y1, x2, y2
face = cv2.resize(face, (self.resolution, self.resolution), interpolation=cv2.INTER_CUBIC)
face = rearrange(torch.from_numpy(face), "h w c -> c h w")
return face, box, affine_matrix
def preprocess_fixed_mask_image(self, image: torch.Tensor, affine_transform=False):
if affine_transform:
image, _, _ = self.affine_transform(image)
else:
image = self.resize(image)
pixel_values = self.normalize(image / 255.0)
masked_pixel_values = pixel_values * self.mask_image
return pixel_values, masked_pixel_values, self.mask_image[0:1]
def prepare_masks_and_masked_images(self, images: Union[torch.Tensor, np.ndarray], affine_transform=False):
if isinstance(images, np.ndarray):
images = torch.from_numpy(images)
if images.shape[3] == 3:
images = rearrange(images, "b h w c -> b c h w")
if self.mask == "fix_mask":
results = [self.preprocess_fixed_mask_image(image, affine_transform=affine_transform) for image in images]
else:
results = [self.preprocess_one_masked_image(image) for image in images]
pixel_values_list, masked_pixel_values_list, masks_list = list(zip(*results))
return torch.stack(pixel_values_list), torch.stack(masked_pixel_values_list), torch.stack(masks_list)
def process_images(self, images: Union[torch.Tensor, np.ndarray]):
if isinstance(images, np.ndarray):
images = torch.from_numpy(images)
if images.shape[3] == 3:
images = rearrange(images, "b h w c -> b c h w")
images = self.resize(images)
pixel_values = self.normalize(images / 255.0)
return pixel_values
def close(self):
if self.face_mesh is not None:
self.face_mesh.close()
def mediapipe_lm478_to_face_alignment_lm68(lm478, return_2d=True):
"""
lm478: [B, 478, 3] or [478,3]
"""
# lm478[..., 0] *= W
# lm478[..., 1] *= H
landmarks_extracted = []
for index in landmark_points_68:
x = lm478[index][0]
y = lm478[index][1]
landmarks_extracted.append((x, y))
return np.array(landmarks_extracted)
landmark_points_68 = [
162,
234,
93,
58,
172,
136,
149,
148,
152,
377,
378,
365,
397,
288,
323,
454,
389,
71,
63,
105,
66,
107,
336,
296,
334,
293,
301,
168,
197,
5,
4,
75,
97,
2,
326,
305,
33,
160,
158,
133,
153,
144,
362,
385,
387,
263,
373,
380,
61,
39,
37,
0,
267,
269,
291,
405,
314,
17,
84,
181,
78,
82,
13,
312,
308,
317,
14,
87,
]
# Refer to https://storage.googleapis.com/mediapipe-assets/documentation/mediapipe_face_landmark_fullsize.png
mouth_surround_landmarks = [
164,
165,
167,
92,
186,
57,
43,
106,
182,
83,
18,
313,
406,
335,
273,
287,
410,
322,
391,
393,
]
face_surround_landmarks = [
152,
377,
400,
378,
379,
365,
397,
288,
435,
433,
411,
425,
423,
327,
326,
94,
97,
98,
203,
205,
187,
213,
215,
58,
172,
136,
150,
149,
176,
148,
]
if __name__ == "__main__":
image_processor = ImageProcessor(512, mask="fix_mask")
video = cv2.VideoCapture("/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/original/val/RD_Radio57_000.mp4")
while True:
ret, frame = video.read()
# if not ret:
# break
# cv2.imwrite("image.jpg", frame)
frame = rearrange(torch.Tensor(frame).type(torch.uint8), "h w c -> c h w")
# face, masked_face, _ = image_processor.preprocess_fixed_mask_image(frame, affine_transform=True)
face, _, _ = image_processor.affine_transform(frame)
break
face = (rearrange(face, "c h w -> h w c").detach().cpu().numpy()).astype(np.uint8)
cv2.imwrite("face.jpg", face)
# masked_face = (rearrange(masked_face, "c h w -> h w c").detach().cpu().numpy()).astype(np.uint8)
# cv2.imwrite("masked_face.jpg", masked_face)
|