khanfou commited on
Commit
9549aab
·
unverified ·
1 Parent(s): d3ada56

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -12
app.py CHANGED
@@ -23,7 +23,6 @@ PAN = df['patent_number'].drop_duplicates()
23
 
24
  st.title('Harvard USPTO Patentability Score')
25
  #make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN)
26
- #make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN)
27
 
28
  #####NEW
29
  with st.form("patent-form"):
@@ -37,15 +36,14 @@ with st.form("patent-form"):
37
  tokenizer = AutoTokenizer.from_pretrained(model_name)
38
  classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
39
 
40
- abstract = df['abstract'].loc[df['patent_number'] == make_choice]
41
 
42
- #decision = df['decision'].loc[df['patent_number'] == make_choice]
43
- X_train = abstract.to_string()
44
- #X_train = decision.to_string()
45
  #X_train = abstract.values.tolist()
46
  results = classifier(X_train, truncation=True)
47
- #result = hupd_model(make_choice)[0]
48
- #score = results['score']
49
  for result in results:
50
  print(result)
51
  score = result['score']
@@ -61,14 +59,9 @@ abstract = df["abstract"].loc[df["patent_number"] == make_choice]
61
  st.subheader(':red[Patent Application]')
62
  st.subheader(':red[Abstract:]')
63
  st.info(abstract)
64
- #st.markdown(f"Publication abstract is **{abstract}** 🎈")
65
 
66
 
67
  claims = df["claims"].loc[df["patent_number"] == make_choice]
68
  st.subheader(':red[Claim:]')
69
  st.info(claims)
70
- #st.markdown(f"Publication Claim is **{claims}** 🎈")
71
-
72
- #form = st.form(key='patent-form')
73
- #submit = form.sidebar.form_submit_button('Submit')
74
 
 
23
 
24
  st.title('Harvard USPTO Patentability Score')
25
  #make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN)
 
26
 
27
  #####NEW
28
  with st.form("patent-form"):
 
36
  tokenizer = AutoTokenizer.from_pretrained(model_name)
37
  classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
38
 
39
+ #abstract = df['abstract'].loc[df['patent_number'] == make_choice]
40
 
41
+ decision = df['decision'].loc[df['patent_number'] == make_choice]
42
+ #X_train = abstract.to_string()
43
+ X_train = decision.to_string()
44
  #X_train = abstract.values.tolist()
45
  results = classifier(X_train, truncation=True)
46
+
 
47
  for result in results:
48
  print(result)
49
  score = result['score']
 
59
  st.subheader(':red[Patent Application]')
60
  st.subheader(':red[Abstract:]')
61
  st.info(abstract)
 
62
 
63
 
64
  claims = df["claims"].loc[df["patent_number"] == make_choice]
65
  st.subheader(':red[Claim:]')
66
  st.info(claims)
 
 
 
 
67