File size: 2,615 Bytes
a509ff9
 
 
 
 
a33aa9b
 
a509ff9
 
7dc19f7
a509ff9
 
 
 
 
 
 
 
 
 
 
5792300
456433b
 
a509ff9
 
 
 
 
 
 
 
 
456433b
 
a509ff9
456433b
a509ff9
 
 
5792300
456433b
58f8528
5792300
456433b
 
 
 
 
5792300
 
a509ff9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from joblib import load
import h5py
from io import BytesIO


# Load the model and data once at startup
with h5py.File('complete_artist_data.hdf5', 'r') as f:
    # Deserialize the vectorizer
    vectorizer_bytes = f['vectorizer'][()].tobytes()
    vectorizer_buffer = BytesIO(vectorizer_bytes)
    vectorizer = load(vectorizer_buffer)
    
    # Load X_artist
    X_artist = f['X_artist'][:]
    
    # Load artist names and decode to strings
    artist_names = [name.decode() for name in f['artist_names'][:]]

def find_similar_artists(new_tags_string, top_n):
    #
    new_image_tags = [tag.replace('_', ' ').strip() for tag in new_tags_string.split(",")]
    unseen_tags = set(new_image_tags) - set(vectorizer.vocabulary_.keys())
    unseen_tags_str = f'Unseen Tags: {", ".join(unseen_tags)}' if unseen_tags else 'No unseen tags.'
    
    X_new_image = vectorizer.transform([','.join(new_image_tags)])
    similarities = cosine_similarity(X_new_image, X_artist)[0]
    
    top_artist_indices = np.argsort(similarities)[-top_n:][::-1]
    top_artists = [(artist_names[i], similarities[i]) for i in top_artist_indices]
    
    top_artists_str = "\n".join([f"{rank+1}. {artist[3:]} ({score:.4f})" for rank, (artist, score) in enumerate(top_artists)])
    dynamic_prompts_formatted_artists = "{" + "|".join([artist for artist, _ in top_artists]) + "}"
    
    return unseen_tags_str, top_artists_str, dynamic_prompts_formatted_artists

iface = gr.Interface(
    fn=find_similar_artists,
    inputs=[
        gr.Textbox(label="Enter image tags", placeholder="e.g. fox, outside, detailed background, ..."),
        gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of artists")
    ],
    outputs=[
        gr.Textbox(label="Unseen Tags", info="These tags are not used in the artist calculation. Even valid e6 tags may be \"unseen\" if they have insufficient data."), 
        gr.Textbox(label="Top Artists", info="These are the artists most strongly associated with your tags.  The number in parenthes is a similarity score between 0 and 1, with higher numbers indicating greater similarity."),
        gr.Textbox(label="Dynamic Prompts Format", info="For if you're using the Automatic1111 webui (https://github.com/AUTOMATIC1111/stable-diffusion-webui) with the Dynamic Prompts extension activated (https://github.com/adieyal/sd-dynamic-prompts) and want to try them all individually.") 
    ],
    title="Tagset Completer",
    description="Enter a list of comma-separated e6 tags"
)

iface.launch()