Spaces:
Running
Running
import os | |
import gradio as gr | |
import numpy as np | |
import torch | |
from InferenceInterfaces.Meta_FastSpeech2 import Meta_FastSpeech2 | |
os.system("pip uninstall -y gradio") | |
os.system("pip install gradio==2.7.5.2") | |
def float2pcm(sig, dtype='int16'): | |
""" | |
https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182 | |
""" | |
sig = np.asarray(sig) | |
if sig.dtype.kind != 'f': | |
raise TypeError("'sig' must be a float array") | |
dtype = np.dtype(dtype) | |
if dtype.kind not in 'iu': | |
raise TypeError("'dtype' must be an integer type") | |
i = np.iinfo(dtype) | |
abs_max = 2 ** (i.bits - 1) | |
offset = i.min + abs_max | |
return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype) | |
class TTS_Interface: | |
def __init__(self): | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.model = Meta_FastSpeech2(device=self.device) | |
self.current_speaker = "English Speaker's Voice" | |
self.current_language = "English" | |
self.language_id_lookup = { | |
"English" : "en", | |
"German" : "de", | |
"Greek" : "el", | |
"Spanish" : "es", | |
"Finnish" : "fi", | |
"Russian" : "ru", | |
"Hungarian" : "hu", | |
"Dutch" : "nl", | |
"French" : "fr", | |
'Polish' : "pl", | |
'Portuguese': "pt", | |
'Italian' : "it", | |
} | |
self.speaker_path_lookup = { | |
"English Speaker's Voice" : "reference_audios/english.wav", | |
"German Speaker's Voice" : "reference_audios/german.wav", | |
"Greek Speaker's Voice" : "reference_audios/greek.wav", | |
"Spanish Speaker's Voice" : "reference_audios/spanish.wav", | |
"Finnish Speaker's Voice" : "reference_audios/finnish.wav", | |
"Russian Speaker's Voice" : "reference_audios/russian.wav", | |
"Hungarian Speaker's Voice" : "reference_audios/hungarian.wav", | |
"Dutch Speaker's Voice" : "reference_audios/dutch.wav", | |
"French Speaker's Voice" : "reference_audios/french.wav", | |
"Polish Speaker's Voice" : "reference_audios/polish.flac", | |
"Portuguese Speaker's Voice": "reference_audios/portuguese.flac", | |
"Italian Speaker's Voice" : "reference_audios/italian.flac", | |
} | |
def read(self, prompt, language, speaker): | |
if len(prompt) > 2000: | |
if language == "English": | |
prompt = "Your input was too long. Please try either a shorter text or split it into several parts." | |
elif language == "German": | |
prompt = "Deine Eingabe war zu lang. Bitte versuche es entweder mit einem kürzeren Text oder teile ihn in mehrere Teile auf." | |
elif language == "Greek": | |
prompt = "Η εισήγησή σας ήταν πολύ μεγάλη. Παρακαλώ δοκιμάστε είτε ένα μικρότερο κείμενο είτε χωρίστε το σε διάφορα μέρη." | |
elif language == "Spanish": | |
prompt = "Su entrada es demasiado larga. Por favor, intente un texto más corto o divídalo en varias partes." | |
elif language == "Finnish": | |
prompt = "Vastauksesi oli liian pitkä. Kokeile joko lyhyempää tekstiä tai jaa se useampaan osaan." | |
elif language == "Russian": | |
prompt = "Ваш текст слишком длинный. Пожалуйста, попробуйте либо сократить текст, либо разделить его на несколько частей." | |
elif language == "Hungarian": | |
prompt = "Túl hosszú volt a bevitele. Kérjük, próbáljon meg rövidebb szöveget írni, vagy ossza több részre." | |
elif language == "Dutch": | |
prompt = "Uw input was te lang. Probeer een kortere tekst of splits het in verschillende delen." | |
elif language == "French": | |
prompt = "Votre saisie était trop longue. Veuillez essayer un texte plus court ou le diviser en plusieurs parties." | |
elif language == 'Polish': | |
prompt = "Twój wpis był zbyt długi. Spróbuj skrócić tekst lub podzielić go na kilka części." | |
elif language == 'Portuguese': | |
prompt = "O seu contributo foi demasiado longo. Por favor, tente um texto mais curto ou divida-o em várias partes." | |
elif language == 'Italian': | |
prompt = "Il tuo input era troppo lungo. Per favore, prova un testo più corto o dividilo in più parti." | |
if self.current_language != language: | |
self.model.set_language(self.language_id_lookup[language]) | |
self.current_language = language | |
if self.current_speaker != speaker: | |
self.model.set_utterance_embedding(self.speaker_path_lookup[speaker]) | |
self.current_speaker = speaker | |
wav = self.model(prompt) | |
return 48000, float2pcm(wav.cpu().numpy()) | |
meta_model = TTS_Interface() | |
article = "<p style='text-align: left'>This is still a work in progress, models will be exchanged for better ones as soon as they are done. All of those languages are spoken by a single model. Speakers can be transferred across languages. More languages will be added soon. If you just want to listen to some pregenerated audios <a href='https://multilingualtoucan.github.io/' target='_blank'>click here.</a></p><p style='text-align: center'><a href='https://github.com/DigitalPhonetics/IMS-Toucan' target='_blank'>Click here to learn more about the IMS Toucan Speech Synthesis Toolkit</a></p>" | |
iface = gr.Interface(fn=meta_model.read, | |
inputs=[gr.inputs.Textbox(lines=2, | |
placeholder="write what you want the synthesis to read here... (2000 character maximum)", | |
label=" "), | |
gr.inputs.Dropdown(['English', | |
'German', | |
'Greek', | |
'Spanish', | |
'Finnish', | |
'Russian', | |
'Hungarian', | |
'Dutch', | |
'French', | |
'Polish', | |
'Portuguese', | |
'Italian'], type="value", default='English', label="Language Selection"), | |
gr.inputs.Dropdown(["English Speaker's Voice", | |
"German Speaker's Voice", | |
"Greek Speaker's Voice", | |
"Spanish Speaker's Voice", | |
"Finnish Speaker's Voice", | |
"Russian Speaker's Voice", | |
"Hungarian Speaker's Voice", | |
"Dutch Speaker's Voice", | |
"French Speaker's Voice", | |
"Polish Speaker's Voice", | |
"Portuguese Speaker's Voice", | |
"Italian Speaker's Voice"], type="value", default="English Speaker's Voice", label="Speaker Selection")], | |
outputs=gr.outputs.Audio(type="numpy", label=None), | |
layout="vertical", | |
title="IMS Toucan Multilingual Multispeaker Demo", | |
thumbnail="Utility/toucan.png", | |
theme="default", | |
allow_flagging="never", | |
allow_screenshot=False, | |
article=article) | |
iface.launch(enable_queue=True) | |