File size: 9,680 Bytes
f23c138
 
cea6632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7f208
 
502b0b6
 
9657f19
502b0b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec841b5
502b0b6
 
 
 
 
 
 
 
 
 
ec841b5
cea6632
ea00603
 
502b0b6
9657f19
3ad2c3a
 
298c2ff
 
 
 
 
 
 
 
 
 
 
 
ec841b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298c2ff
ec841b5
298c2ff
cea6632
 
 
 
695f3f5
cea6632
 
5468bc2
041054f
9657f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502b0b6
 
 
 
 
 
 
 
 
 
 
9657f19
cea6632
 
dcfcebe
cea6632
 
 
404e64b
1d606bc
404e64b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os

import gradio as gr
import numpy as np
import torch

from InferenceInterfaces.Meta_FastSpeech2 import Meta_FastSpeech2

def float2pcm(sig, dtype='int16'):
    """
    https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182
    """
    sig = np.asarray(sig)
    if sig.dtype.kind != 'f':
        raise TypeError("'sig' must be a float array")
    dtype = np.dtype(dtype)
    if dtype.kind not in 'iu':
        raise TypeError("'dtype' must be an integer type")
    i = np.iinfo(dtype)
    abs_max = 2 ** (i.bits - 1)
    offset = i.min + abs_max
    return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype)


class TTS_Interface:

    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model = Meta_FastSpeech2(device=self.device)
        self.current_speaker = "English Speaker's Voice"
        self.current_language = "English"
        self.current_accent = "English"
        self.language_id_lookup = {
            "English"   : "en",
            "German"    : "de",
            "Greek"     : "el",
            "Spanish"   : "es",
            "Finnish"   : "fi",
            "Russian"   : "ru",
            "Hungarian" : "hu",
            "Dutch"     : "nl",
            "French"    : "fr",
            'Polish'    : "pl",
            'Portuguese': "pt",
            'Italian'   : "it",
            }
        self.speaker_path_lookup = {
            "English Speaker's Voice"   : "reference_audios/english.wav",
            "German Speaker's Voice"    : "reference_audios/german.wav",
            "Greek Speaker's Voice"     : "reference_audios/greek.wav",
            "Spanish Speaker's Voice"   : "reference_audios/spanish.wav",
            "Finnish Speaker's Voice"   : "reference_audios/finnish.wav",
            "Russian Speaker's Voice"   : "reference_audios/russian.wav",
            "Hungarian Speaker's Voice" : "reference_audios/hungarian.wav",
            "Dutch Speaker's Voice"     : "reference_audios/dutch.wav",
            "French Speaker's Voice"    : "reference_audios/french.wav",
            "Polish Speaker's Voice"    : "reference_audios/polish.flac",
            "Portuguese Speaker's Voice": "reference_audios/portuguese.flac",
            "Italian Speaker's Voice"   : "reference_audios/italian.flac",
            }
        self.model.set_utterance_embedding(self.speaker_path_lookup[self.current_speaker])


    def read(self, prompt, language, accent, speaker):
        language = language.split()[0]
        accent = accent.split()[0]
        if self.current_language != language:
            self.model.set_phonemizer_language(self.language_id_lookup[language])
            self.current_language = language
        if self.current_accent != accent:
            self.model.set_accent_language(self.language_id_lookup[accent])
            self.current_accent = accent
        if self.current_speaker != speaker:
            self.model.set_utterance_embedding(self.speaker_path_lookup[speaker])
            self.current_speaker = speaker
            
        phones = self.model.text2phone.get_phone_string(prompt)
        if len(phones) > 1800:
            if language == "English":
                prompt = "Your input was too long. Please try either a shorter text or split it into several parts."
            elif language == "German":
                prompt = "Deine Eingabe war zu lang. Bitte versuche es entweder mit einem kürzeren Text oder teile ihn in mehrere Teile auf."
            elif language == "Greek":
                prompt = "Η εισήγησή σας ήταν πολύ μεγάλη. Παρακαλώ δοκιμάστε είτε ένα μικρότερο κείμενο είτε χωρίστε το σε διάφορα μέρη."
            elif language == "Spanish":
                prompt = "Su entrada es demasiado larga. Por favor, intente un texto más corto o divídalo en varias partes."
            elif language == "Finnish":
                prompt = "Vastauksesi oli liian pitkä. Kokeile joko lyhyempää tekstiä tai jaa se useampaan osaan."
            elif language == "Russian":
                prompt = "Ваш текст слишком длинный. Пожалуйста, попробуйте либо сократить текст, либо разделить его на несколько частей."
            elif language == "Hungarian":
                prompt = "Túl hosszú volt a bevitele. Kérjük, próbáljon meg rövidebb szöveget írni, vagy ossza több részre."
            elif language == "Dutch":
                prompt = "Uw input was te lang. Probeer een kortere tekst of splits het in verschillende delen."
            elif language == "French":
                prompt = "Votre saisie était trop longue. Veuillez essayer un texte plus court ou le diviser en plusieurs parties."
            elif language == 'Polish':
                prompt = "Twój wpis był zbyt długi. Spróbuj skrócić tekst lub podzielić go na kilka części."
            elif language == 'Portuguese':
                prompt = "O seu contributo foi demasiado longo. Por favor, tente um texto mais curto ou divida-o em várias partes."
            elif language == 'Italian':
                prompt = "Il tuo input era troppo lungo. Per favore, prova un testo più corto o dividilo in più parti."
            phones = self.model.text2phone.get_phone_string(prompt)

        wav = self.model(phones)
        return 48000, float2pcm(wav.cpu().numpy())


meta_model = TTS_Interface()
article = "<p style='text-align: left'>This is still a work in progress, models will be exchanged for better ones as soon as they are done. All of those languages are spoken by a single model. Speakers can be transferred across languages. More languages will be added soon. If you just want to listen to some pregenerated audios <a href='https://multilingualtoucan.github.io/' target='_blank'>click here.</a></p><p style='text-align: center'><a href='https://github.com/DigitalPhonetics/IMS-Toucan' target='_blank'>Click here to learn more about the IMS Toucan Speech Synthesis Toolkit</a></p>"

iface = gr.Interface(fn=meta_model.read,
                     inputs=[gr.inputs.Textbox(lines=2,
                                               placeholder="write what you want the synthesis to read here... \n(to prevent out of memory errors, too long inputs get replaced with a placeholder)",
                                               label="Text input"),
                             gr.inputs.Dropdown(['English Text',
                                                 'German Text',
                                                 'Greek Text',
                                                 'Spanish Text',
                                                 'Finnish Text',
                                                 'Russian Text',
                                                 'Hungarian Text',
                                                 'Dutch Text',
                                                 'French Text',
                                                 'Polish Text',
                                                 'Portuguese Text',
                                                 'Italian Text'], type="value", default='English Text', label="Select the Language of the Text"),
                             gr.inputs.Dropdown(['English Accent',
                                                 'German Accent',
                                                 'Greek Accent',
                                                 'Spanish Accent',
                                                 'Finnish Accent',
                                                 'Russian Accent',
                                                 'Hungarian Accent',
                                                 'Dutch Accent',
                                                 'French Accent',
                                                 'Polish Accent',
                                                 'Portuguese Accent',
                                                 'Italian Accent'], type="value", default='English Accent', label="Select the Accent of the Speaker"),
                             gr.inputs.Dropdown(["English Speaker's Voice",
                                                 "German Speaker's Voice",
                                                 "Greek Speaker's Voice",
                                                 "Spanish Speaker's Voice",
                                                 "Finnish Speaker's Voice",
                                                 "Russian Speaker's Voice",
                                                 "Hungarian Speaker's Voice",
                                                 "Dutch Speaker's Voice",
                                                 "French Speaker's Voice",
                                                 "Polish Speaker's Voice",
                                                 "Portuguese Speaker's Voice",
                                                 "Italian Speaker's Voice"], type="value", default="English Speaker's Voice", label="Select the Voice of the Speaker")],
                     outputs=gr.outputs.Audio(type="numpy", label=None),
                     layout="vertical",
                     title="IMS Toucan - Multilingual Multispeaker",
                     thumbnail="Utility/toucan.png",
                     theme="default",
                     allow_flagging="never",
                     allow_screenshot=False,
                     article=article)
iface.launch(enable_queue=True)