Spaces:
Sleeping
Sleeping
johnsmith253325
commited on
Commit
·
b346648
1
Parent(s):
7d0f396
feat: 加入LoRA功能
Browse files- modules/models/LLaMA.py +49 -35
- modules/models/models.py +2 -3
modules/models/LLaMA.py
CHANGED
@@ -11,10 +11,6 @@ from ..presets import *
|
|
11 |
from ..utils import *
|
12 |
from .base_model import BaseLLMModel
|
13 |
|
14 |
-
import json
|
15 |
-
from llama_cpp import Llama
|
16 |
-
from huggingface_hub import hf_hub_download
|
17 |
-
|
18 |
SYS_PREFIX = "<<SYS>>\n"
|
19 |
SYS_POSTFIX = "\n<</SYS>>\n\n"
|
20 |
INST_PREFIX = "<s>[INST] "
|
@@ -22,6 +18,7 @@ INST_POSTFIX = " "
|
|
22 |
OUTPUT_PREFIX = "[/INST] "
|
23 |
OUTPUT_POSTFIX = "</s>"
|
24 |
|
|
|
25 |
def download(repo_id, filename, retry=10):
|
26 |
if os.path.exists("./models/downloaded_models.json"):
|
27 |
with open("./models/downloaded_models.json", "r") as f:
|
@@ -32,7 +29,12 @@ def download(repo_id, filename, retry=10):
|
|
32 |
downloaded_models = {}
|
33 |
while retry > 0:
|
34 |
try:
|
35 |
-
model_path = hf_hub_download(
|
|
|
|
|
|
|
|
|
|
|
36 |
downloaded_models[repo_id] = {"path": model_path}
|
37 |
with open("./models/downloaded_models.json", "w") as f:
|
38 |
json.dump(downloaded_models, f)
|
@@ -46,57 +48,69 @@ def download(repo_id, filename, retry=10):
|
|
46 |
|
47 |
|
48 |
class LLaMA_Client(BaseLLMModel):
|
49 |
-
def __init__(
|
50 |
-
self,
|
51 |
-
model_name,
|
52 |
-
lora_path=None,
|
53 |
-
user_name=""
|
54 |
-
) -> None:
|
55 |
super().__init__(model_name=model_name, user=user_name)
|
56 |
|
57 |
self.max_generation_token = 1000
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
self.system_prompt = ""
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
# model_dirs = os.listdir("models")
|
69 |
-
# if model_name in model_dirs:
|
70 |
-
# model_path = f"models/{model_name}"
|
71 |
-
# if model_path is not None:
|
72 |
-
# model_source = model_path
|
73 |
-
# else:
|
74 |
-
# model_source = f"decapoda-research/{model_name}"
|
75 |
-
# raise Exception(f"models目录下没有这个模型: {model_name}")
|
76 |
-
# if lora_path is not None:
|
77 |
-
# lora_path = f"lora/{lora_path}"
|
78 |
|
79 |
def _get_llama_style_input(self):
|
80 |
context = []
|
81 |
for conv in self.history:
|
82 |
if conv["role"] == "system":
|
83 |
-
context.append(SYS_PREFIX+conv["content"]+SYS_POSTFIX)
|
84 |
elif conv["role"] == "user":
|
85 |
-
context.append(
|
|
|
|
|
86 |
else:
|
87 |
-
context.append(conv["content"]+OUTPUT_POSTFIX)
|
88 |
return "".join(context)
|
89 |
|
90 |
def get_answer_at_once(self):
|
91 |
context = self._get_llama_style_input()
|
92 |
-
response =
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return response, len(response)
|
94 |
|
95 |
def get_answer_stream_iter(self):
|
96 |
context = self._get_llama_style_input()
|
97 |
-
iter =
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
partial_text = ""
|
99 |
for i in iter:
|
100 |
response = i["choices"][0]["text"]
|
101 |
partial_text += response
|
102 |
-
yield partial_text
|
|
|
11 |
from ..utils import *
|
12 |
from .base_model import BaseLLMModel
|
13 |
|
|
|
|
|
|
|
|
|
14 |
SYS_PREFIX = "<<SYS>>\n"
|
15 |
SYS_POSTFIX = "\n<</SYS>>\n\n"
|
16 |
INST_PREFIX = "<s>[INST] "
|
|
|
18 |
OUTPUT_PREFIX = "[/INST] "
|
19 |
OUTPUT_POSTFIX = "</s>"
|
20 |
|
21 |
+
|
22 |
def download(repo_id, filename, retry=10):
|
23 |
if os.path.exists("./models/downloaded_models.json"):
|
24 |
with open("./models/downloaded_models.json", "r") as f:
|
|
|
29 |
downloaded_models = {}
|
30 |
while retry > 0:
|
31 |
try:
|
32 |
+
model_path = hf_hub_download(
|
33 |
+
repo_id=repo_id,
|
34 |
+
filename=filename,
|
35 |
+
cache_dir="models",
|
36 |
+
resume_download=True,
|
37 |
+
)
|
38 |
downloaded_models[repo_id] = {"path": model_path}
|
39 |
with open("./models/downloaded_models.json", "w") as f:
|
40 |
json.dump(downloaded_models, f)
|
|
|
48 |
|
49 |
|
50 |
class LLaMA_Client(BaseLLMModel):
|
51 |
+
def __init__(self, model_name, lora_path=None, user_name="") -> None:
|
|
|
|
|
|
|
|
|
|
|
52 |
super().__init__(model_name=model_name, user=user_name)
|
53 |
|
54 |
self.max_generation_token = 1000
|
55 |
+
if model_name in MODEL_METADATA:
|
56 |
+
path_to_model = download(
|
57 |
+
MODEL_METADATA[model_name]["repo_id"],
|
58 |
+
MODEL_METADATA[model_name]["filelist"][0],
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
dir_to_model = os.path.join("models", model_name)
|
62 |
+
# look for nay .gguf file in the dir_to_model directory and its subdirectories
|
63 |
+
path_to_model = None
|
64 |
+
for root, dirs, files in os.walk(dir_to_model):
|
65 |
+
for file in files:
|
66 |
+
if file.endswith(".gguf"):
|
67 |
+
path_to_model = os.path.join(root, file)
|
68 |
+
break
|
69 |
+
if path_to_model is not None:
|
70 |
+
break
|
71 |
self.system_prompt = ""
|
72 |
|
73 |
+
if lora_path is not None:
|
74 |
+
lora_path = os.path.join("lora", lora_path)
|
75 |
+
self.model = Llama(model_path=path_to_model, lora_path=lora_path)
|
76 |
+
else:
|
77 |
+
self.model = Llama(model_path=path_to_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def _get_llama_style_input(self):
|
80 |
context = []
|
81 |
for conv in self.history:
|
82 |
if conv["role"] == "system":
|
83 |
+
context.append(SYS_PREFIX + conv["content"] + SYS_POSTFIX)
|
84 |
elif conv["role"] == "user":
|
85 |
+
context.append(
|
86 |
+
INST_PREFIX + conv["content"] + INST_POSTFIX + OUTPUT_PREFIX
|
87 |
+
)
|
88 |
else:
|
89 |
+
context.append(conv["content"] + OUTPUT_POSTFIX)
|
90 |
return "".join(context)
|
91 |
|
92 |
def get_answer_at_once(self):
|
93 |
context = self._get_llama_style_input()
|
94 |
+
response = self.model(
|
95 |
+
context,
|
96 |
+
max_tokens=self.max_generation_token,
|
97 |
+
stop=[],
|
98 |
+
echo=False,
|
99 |
+
stream=False,
|
100 |
+
)
|
101 |
return response, len(response)
|
102 |
|
103 |
def get_answer_stream_iter(self):
|
104 |
context = self._get_llama_style_input()
|
105 |
+
iter = self.model(
|
106 |
+
context,
|
107 |
+
max_tokens=self.max_generation_token,
|
108 |
+
stop=[],
|
109 |
+
echo=False,
|
110 |
+
stream=True,
|
111 |
+
)
|
112 |
partial_text = ""
|
113 |
for i in iter:
|
114 |
response = i["choices"][0]["text"]
|
115 |
partial_text += response
|
116 |
+
yield partial_text
|
modules/models/models.py
CHANGED
@@ -26,7 +26,7 @@ def get_model(
|
|
26 |
msg = i18n("模型设置为了:") + f" {model_name}"
|
27 |
model_type = ModelType.get_type(model_name)
|
28 |
lora_selector_visibility = False
|
29 |
-
lora_choices = []
|
30 |
dont_change_lora_selector = False
|
31 |
if model_type != ModelType.OpenAI:
|
32 |
config.local_embedding = True
|
@@ -55,8 +55,7 @@ def get_model(
|
|
55 |
logging.info(msg)
|
56 |
lora_selector_visibility = True
|
57 |
if os.path.isdir("lora"):
|
58 |
-
get_file_names_by_pinyin("lora", filetypes=[""])
|
59 |
-
lora_choices = ["No LoRA"] + lora_choices
|
60 |
elif model_type == ModelType.LLaMA and lora_model_path != "":
|
61 |
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
|
62 |
from .LLaMA import LLaMA_Client
|
|
|
26 |
msg = i18n("模型设置为了:") + f" {model_name}"
|
27 |
model_type = ModelType.get_type(model_name)
|
28 |
lora_selector_visibility = False
|
29 |
+
lora_choices = ["No LoRA"]
|
30 |
dont_change_lora_selector = False
|
31 |
if model_type != ModelType.OpenAI:
|
32 |
config.local_embedding = True
|
|
|
55 |
logging.info(msg)
|
56 |
lora_selector_visibility = True
|
57 |
if os.path.isdir("lora"):
|
58 |
+
lora_choices = ["No LoRA"] + get_file_names_by_pinyin("lora", filetypes=[""])
|
|
|
59 |
elif model_type == ModelType.LLaMA and lora_model_path != "":
|
60 |
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
|
61 |
from .LLaMA import LLaMA_Client
|