Spaces:
Sleeping
Sleeping
将本地LLM定义为全局变量,防止多次调用。make class great again
Browse files- ChuanhuChatbot.py +38 -32
- modules/models.py +138 -222
- modules/presets.py +5 -0
- modules/utils.py +76 -0
ChuanhuChatbot.py
CHANGED
@@ -10,7 +10,7 @@ from modules.config import *
|
|
10 |
from modules.utils import *
|
11 |
from modules.presets import *
|
12 |
from modules.overwrites import *
|
13 |
-
from modules.models import
|
14 |
|
15 |
gr.Chatbot.postprocess = postprocess
|
16 |
PromptHelper.compact_text_chunks = compact_text_chunks
|
@@ -18,11 +18,14 @@ PromptHelper.compact_text_chunks = compact_text_chunks
|
|
18 |
with open("assets/custom.css", "r", encoding="utf-8") as f:
|
19 |
customCSS = f.read()
|
20 |
|
|
|
|
|
|
|
21 |
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
22 |
user_name = gr.State("")
|
23 |
promptTemplates = gr.State(load_template(get_template_names(plain=True)[0], mode=2))
|
24 |
user_question = gr.State("")
|
25 |
-
current_model = gr.State(
|
26 |
|
27 |
topic = gr.State("未命名对话历史记录")
|
28 |
|
@@ -264,8 +267,9 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
264 |
gr.Markdown(CHUANHU_DESCRIPTION)
|
265 |
gr.HTML(FOOTER.format(versions=versions_html()), elem_id="footer")
|
266 |
chatgpt_predict_args = dict(
|
267 |
-
fn=
|
268 |
inputs=[
|
|
|
269 |
user_question,
|
270 |
chatbot,
|
271 |
use_streaming_checkbox,
|
@@ -297,18 +301,18 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
297 |
)
|
298 |
|
299 |
get_usage_args = dict(
|
300 |
-
fn=
|
301 |
)
|
302 |
|
303 |
load_history_from_file_args = dict(
|
304 |
-
fn=
|
305 |
-
inputs=[historyFileSelectDropdown, chatbot, user_name],
|
306 |
outputs=[saveFileName, systemPromptTxt, chatbot]
|
307 |
)
|
308 |
|
309 |
|
310 |
# Chatbot
|
311 |
-
cancelBtn.click(
|
312 |
|
313 |
user_input.submit(**transfer_input_args).then(**chatgpt_predict_args).then(**end_outputing_args)
|
314 |
user_input.submit(**get_usage_args)
|
@@ -317,15 +321,17 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
317 |
submitBtn.click(**get_usage_args)
|
318 |
|
319 |
emptyBtn.click(
|
320 |
-
|
|
|
321 |
outputs=[chatbot, status_display],
|
322 |
show_progress=True,
|
323 |
)
|
324 |
emptyBtn.click(**reset_textbox_args)
|
325 |
|
326 |
retryBtn.click(**start_outputing_args).then(
|
327 |
-
|
328 |
[
|
|
|
329 |
chatbot,
|
330 |
use_streaming_checkbox,
|
331 |
use_websearch_checkbox,
|
@@ -338,14 +344,14 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
338 |
retryBtn.click(**get_usage_args)
|
339 |
|
340 |
delFirstBtn.click(
|
341 |
-
|
342 |
-
|
343 |
[status_display],
|
344 |
)
|
345 |
|
346 |
delLastBtn.click(
|
347 |
-
|
348 |
-
[chatbot],
|
349 |
[chatbot, status_display],
|
350 |
show_progress=False
|
351 |
)
|
@@ -353,14 +359,14 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
353 |
two_column.change(update_doc_config, [two_column], None)
|
354 |
|
355 |
# LLM Models
|
356 |
-
keyTxt.change(
|
357 |
keyTxt.submit(**get_usage_args)
|
358 |
-
single_turn_checkbox.change(
|
359 |
-
model_select_dropdown.change(
|
360 |
-
lora_select_dropdown.change(
|
361 |
|
362 |
# Template
|
363 |
-
systemPromptTxt.change(
|
364 |
templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown])
|
365 |
templateFileSelectDropdown.change(
|
366 |
load_template,
|
@@ -377,15 +383,15 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
377 |
|
378 |
# S&L
|
379 |
saveHistoryBtn.click(
|
380 |
-
|
381 |
-
[saveFileName, chatbot, user_name],
|
382 |
downloadFile,
|
383 |
show_progress=True,
|
384 |
)
|
385 |
saveHistoryBtn.click(get_history_names, [gr.State(False), user_name], [historyFileSelectDropdown])
|
386 |
exportMarkdownBtn.click(
|
387 |
-
|
388 |
-
[saveFileName, chatbot, user_name],
|
389 |
downloadFile,
|
390 |
show_progress=True,
|
391 |
)
|
@@ -394,16 +400,16 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
|
394 |
downloadFile.change(**load_history_from_file_args)
|
395 |
|
396 |
# Advanced
|
397 |
-
max_context_length_slider.change(
|
398 |
-
temperature_slider.change(
|
399 |
-
top_p_slider.change(
|
400 |
-
n_choices_slider.change(
|
401 |
-
stop_sequence_txt.change(
|
402 |
-
max_generation_slider.change(
|
403 |
-
presence_penalty_slider.change(
|
404 |
-
frequency_penalty_slider.change(
|
405 |
-
logit_bias_txt.change(
|
406 |
-
user_identifier_txt.change(
|
407 |
|
408 |
default_btn.click(
|
409 |
reset_default, [], [apihostTxt, proxyTxt, status_display], show_progress=True
|
|
|
10 |
from modules.utils import *
|
11 |
from modules.presets import *
|
12 |
from modules.overwrites import *
|
13 |
+
from modules.models import get_model
|
14 |
|
15 |
gr.Chatbot.postprocess = postprocess
|
16 |
PromptHelper.compact_text_chunks = compact_text_chunks
|
|
|
18 |
with open("assets/custom.css", "r", encoding="utf-8") as f:
|
19 |
customCSS = f.read()
|
20 |
|
21 |
+
def create_new_model():
|
22 |
+
return get_model(model_name = MODELS[DEFAULT_MODEL], access_key = my_api_key)[0]
|
23 |
+
|
24 |
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
25 |
user_name = gr.State("")
|
26 |
promptTemplates = gr.State(load_template(get_template_names(plain=True)[0], mode=2))
|
27 |
user_question = gr.State("")
|
28 |
+
current_model = gr.State(create_new_model)
|
29 |
|
30 |
topic = gr.State("未命名对话历史记录")
|
31 |
|
|
|
267 |
gr.Markdown(CHUANHU_DESCRIPTION)
|
268 |
gr.HTML(FOOTER.format(versions=versions_html()), elem_id="footer")
|
269 |
chatgpt_predict_args = dict(
|
270 |
+
fn=predict,
|
271 |
inputs=[
|
272 |
+
current_model,
|
273 |
user_question,
|
274 |
chatbot,
|
275 |
use_streaming_checkbox,
|
|
|
301 |
)
|
302 |
|
303 |
get_usage_args = dict(
|
304 |
+
fn=billing_info, inputs=[current_model], outputs=[usageTxt], show_progress=False
|
305 |
)
|
306 |
|
307 |
load_history_from_file_args = dict(
|
308 |
+
fn=load_chat_history,
|
309 |
+
inputs=[current_model, historyFileSelectDropdown, chatbot, user_name],
|
310 |
outputs=[saveFileName, systemPromptTxt, chatbot]
|
311 |
)
|
312 |
|
313 |
|
314 |
# Chatbot
|
315 |
+
cancelBtn.click(interrupt, [current_model], [])
|
316 |
|
317 |
user_input.submit(**transfer_input_args).then(**chatgpt_predict_args).then(**end_outputing_args)
|
318 |
user_input.submit(**get_usage_args)
|
|
|
321 |
submitBtn.click(**get_usage_args)
|
322 |
|
323 |
emptyBtn.click(
|
324 |
+
reset,
|
325 |
+
inputs=[current_model],
|
326 |
outputs=[chatbot, status_display],
|
327 |
show_progress=True,
|
328 |
)
|
329 |
emptyBtn.click(**reset_textbox_args)
|
330 |
|
331 |
retryBtn.click(**start_outputing_args).then(
|
332 |
+
retry,
|
333 |
[
|
334 |
+
current_model,
|
335 |
chatbot,
|
336 |
use_streaming_checkbox,
|
337 |
use_websearch_checkbox,
|
|
|
344 |
retryBtn.click(**get_usage_args)
|
345 |
|
346 |
delFirstBtn.click(
|
347 |
+
delete_first_conversation,
|
348 |
+
[current_model],
|
349 |
[status_display],
|
350 |
)
|
351 |
|
352 |
delLastBtn.click(
|
353 |
+
delete_last_conversation,
|
354 |
+
[current_model, chatbot],
|
355 |
[chatbot, status_display],
|
356 |
show_progress=False
|
357 |
)
|
|
|
359 |
two_column.change(update_doc_config, [two_column], None)
|
360 |
|
361 |
# LLM Models
|
362 |
+
keyTxt.change(set_key, [current_model, keyTxt], [status_display]).then(**get_usage_args)
|
363 |
keyTxt.submit(**get_usage_args)
|
364 |
+
single_turn_checkbox.change(set_single_turn, [current_model, single_turn_checkbox], None)
|
365 |
+
model_select_dropdown.change(get_model, [model_select_dropdown, lora_select_dropdown, keyTxt, temperature_slider, top_p_slider, systemPromptTxt], [current_model, status_display, lora_select_dropdown], show_progress=True)
|
366 |
+
lora_select_dropdown.change(get_model, [model_select_dropdown, lora_select_dropdown, keyTxt, temperature_slider, top_p_slider, systemPromptTxt], [current_model, status_display], show_progress=True)
|
367 |
|
368 |
# Template
|
369 |
+
systemPromptTxt.change(set_system_prompt, [current_model, systemPromptTxt], None)
|
370 |
templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown])
|
371 |
templateFileSelectDropdown.change(
|
372 |
load_template,
|
|
|
383 |
|
384 |
# S&L
|
385 |
saveHistoryBtn.click(
|
386 |
+
save_chat_history,
|
387 |
+
[current_model, saveFileName, chatbot, user_name],
|
388 |
downloadFile,
|
389 |
show_progress=True,
|
390 |
)
|
391 |
saveHistoryBtn.click(get_history_names, [gr.State(False), user_name], [historyFileSelectDropdown])
|
392 |
exportMarkdownBtn.click(
|
393 |
+
export_markdown,
|
394 |
+
[current_model, saveFileName, chatbot, user_name],
|
395 |
downloadFile,
|
396 |
show_progress=True,
|
397 |
)
|
|
|
400 |
downloadFile.change(**load_history_from_file_args)
|
401 |
|
402 |
# Advanced
|
403 |
+
max_context_length_slider.change(set_token_upper_limit, [current_model, max_context_length_slider], None)
|
404 |
+
temperature_slider.change(set_temperature, [current_model, temperature_slider], None)
|
405 |
+
top_p_slider.change(set_top_p, [current_model, top_p_slider], None)
|
406 |
+
n_choices_slider.change(set_n_choices, [current_model, n_choices_slider], None)
|
407 |
+
stop_sequence_txt.change(set_stop_sequence, [current_model, stop_sequence_txt], None)
|
408 |
+
max_generation_slider.change(set_max_tokens, [current_model, max_generation_slider], None)
|
409 |
+
presence_penalty_slider.change(set_presence_penalty, [current_model, presence_penalty_slider], None)
|
410 |
+
frequency_penalty_slider.change(set_frequency_penalty, [current_model, frequency_penalty_slider], None)
|
411 |
+
logit_bias_txt.change(set_logit_bias, [current_model, logit_bias_txt], None)
|
412 |
+
user_identifier_txt.change(set_user_identifier, [current_model, user_identifier_txt], None)
|
413 |
|
414 |
default_btn.click(
|
415 |
reset_default, [], [apihostTxt, proxyTxt, status_display], show_progress=True
|
modules/models.py
CHANGED
@@ -207,51 +207,52 @@ class OpenAIClient(BaseLLMModel):
|
|
207 |
continue
|
208 |
if error_msg:
|
209 |
raise Exception(error_msg)
|
210 |
-
|
211 |
|
212 |
class ChatGLM_Client(BaseLLMModel):
|
213 |
def __init__(self, model_name) -> None:
|
214 |
super().__init__(model_name=model_name)
|
215 |
from transformers import AutoTokenizer, AutoModel
|
216 |
import torch
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
)
|
231 |
-
quantified = False
|
232 |
-
if "int4" in model_name:
|
233 |
-
quantified = True
|
234 |
-
if quantified:
|
235 |
-
model = AutoModel.from_pretrained(
|
236 |
-
model_source, trust_remote_code=True
|
237 |
-
).half()
|
238 |
-
else:
|
239 |
-
model = AutoModel.from_pretrained(
|
240 |
model_source, trust_remote_code=True
|
241 |
-
)
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
def _get_glm_style_input(self):
|
257 |
history = [x["content"] for x in self.history]
|
@@ -265,13 +266,13 @@ class ChatGLM_Client(BaseLLMModel):
|
|
265 |
|
266 |
def get_answer_at_once(self):
|
267 |
history, query = self._get_glm_style_input()
|
268 |
-
response, _ =
|
269 |
return response, len(response)
|
270 |
|
271 |
def get_answer_stream_iter(self):
|
272 |
history, query = self._get_glm_style_input()
|
273 |
-
for response, history in
|
274 |
-
|
275 |
query,
|
276 |
history,
|
277 |
max_length=self.token_upper_limit,
|
@@ -292,53 +293,53 @@ class LLaMA_Client(BaseLLMModel):
|
|
292 |
from lmflow.pipeline.auto_pipeline import AutoPipeline
|
293 |
from lmflow.models.auto_model import AutoModel
|
294 |
from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments
|
295 |
-
|
296 |
-
if os.path.exists("models"):
|
297 |
-
model_dirs = os.listdir("models")
|
298 |
-
if model_name in model_dirs:
|
299 |
-
model_path = f"models/{model_name}"
|
300 |
-
if model_path is not None:
|
301 |
-
model_source = model_path
|
302 |
-
else:
|
303 |
-
model_source = f"decapoda-research/{model_name}"
|
304 |
-
# raise Exception(f"models目录下没有这个模型: {model_name}")
|
305 |
-
if lora_path is not None:
|
306 |
-
lora_path = f"lora/{lora_path}"
|
307 |
self.max_generation_token = 1000
|
308 |
-
|
309 |
-
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
|
310 |
-
pipeline_args = InferencerArguments(local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
311 |
-
|
312 |
-
with open(pipeline_args.deepspeed, "r") as f:
|
313 |
-
ds_config = json.load(f)
|
314 |
-
|
315 |
-
self.model = AutoModel.get_model(
|
316 |
-
model_args,
|
317 |
-
tune_strategy="none",
|
318 |
-
ds_config=ds_config,
|
319 |
-
)
|
320 |
-
|
321 |
# We don't need input data
|
322 |
data_args = DatasetArguments(dataset_path=None)
|
323 |
self.dataset = Dataset(data_args)
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
# Chats
|
333 |
-
model_name = model_args.model_name_or_path
|
334 |
-
if model_args.lora_model_path is not None:
|
335 |
-
|
336 |
|
337 |
# context = (
|
338 |
# "You are a helpful assistant who follows the given instructions"
|
339 |
# " unconditionally."
|
340 |
# )
|
341 |
-
|
342 |
|
343 |
def _get_llama_style_input(self):
|
344 |
history = []
|
@@ -358,8 +359,8 @@ class LLaMA_Client(BaseLLMModel):
|
|
358 |
{"type": "text_only", "instances": [{"text": context}]}
|
359 |
)
|
360 |
|
361 |
-
output_dataset =
|
362 |
-
model=
|
363 |
dataset=input_dataset,
|
364 |
max_new_tokens=self.max_generation_token,
|
365 |
temperature=self.temperature,
|
@@ -376,8 +377,8 @@ class LLaMA_Client(BaseLLMModel):
|
|
376 |
input_dataset = self.dataset.from_dict(
|
377 |
{"type": "text_only", "instances": [{"text": context+partial_text}]}
|
378 |
)
|
379 |
-
output_dataset =
|
380 |
-
model=
|
381 |
dataset=input_dataset,
|
382 |
max_new_tokens=step,
|
383 |
temperature=self.temperature,
|
@@ -389,147 +390,62 @@ class LLaMA_Client(BaseLLMModel):
|
|
389 |
yield partial_text
|
390 |
|
391 |
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
)
|
425 |
-
elif model_type == ModelType.ChatGLM:
|
426 |
-
logging.info(f"正在加载ChatGLM模型: {model_name}")
|
427 |
-
model = ChatGLM_Client(model_name)
|
428 |
-
elif model_type == ModelType.LLaMA and lora_model_path == "":
|
429 |
-
msg = f"现在请为 {model_name} 选择LoRA模型"
|
430 |
-
logging.info(msg)
|
431 |
-
lora_selector_visibility = True
|
432 |
-
if os.path.isdir("lora"):
|
433 |
-
lora_choices = get_file_names("lora", plain=True, filetypes=[""])
|
434 |
-
lora_choices = ["No LoRA"] + lora_choices
|
435 |
-
elif model_type == ModelType.LLaMA and lora_model_path != "":
|
436 |
-
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
|
437 |
-
dont_change_lora_selector = True
|
438 |
-
if lora_model_path == "No LoRA":
|
439 |
-
lora_model_path = None
|
440 |
-
msg += " + No LoRA"
|
441 |
-
else:
|
442 |
-
msg += f" + {lora_model_path}"
|
443 |
-
model = LLaMA_Client(model_name, lora_model_path)
|
444 |
-
elif model_type == ModelType.Unknown:
|
445 |
-
raise ValueError(f"未知模型: {model_name}")
|
446 |
logging.info(msg)
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
def interrupt(self, *args):
|
471 |
-
return self.model.interrupt(*args)
|
472 |
-
|
473 |
-
def reset(self, *args):
|
474 |
-
return self.model.reset(*args)
|
475 |
-
|
476 |
-
def retry(self, *args):
|
477 |
-
iter = self.model.retry(*args)
|
478 |
-
for i in iter:
|
479 |
-
yield i
|
480 |
-
|
481 |
-
def delete_first_conversation(self, *args):
|
482 |
-
return self.model.delete_first_conversation(*args)
|
483 |
-
|
484 |
-
def delete_last_conversation(self, *args):
|
485 |
-
return self.model.delete_last_conversation(*args)
|
486 |
-
|
487 |
-
def set_system_prompt(self, *args):
|
488 |
-
return self.model.set_system_prompt(*args)
|
489 |
-
|
490 |
-
def save_chat_history(self, *args):
|
491 |
-
return self.model.save_chat_history(*args)
|
492 |
-
|
493 |
-
def export_markdown(self, *args):
|
494 |
-
return self.model.export_markdown(*args)
|
495 |
-
|
496 |
-
def load_chat_history(self, *args):
|
497 |
-
return self.model.load_chat_history(*args)
|
498 |
-
|
499 |
-
def set_token_upper_limit(self, *args):
|
500 |
-
return self.model.set_token_upper_limit(*args)
|
501 |
-
|
502 |
-
def set_temperature(self, *args):
|
503 |
-
self.model.set_temperature(*args)
|
504 |
-
|
505 |
-
def set_top_p(self, *args):
|
506 |
-
self.model.set_top_p(*args)
|
507 |
-
|
508 |
-
def set_n_choices(self, *args):
|
509 |
-
self.model.set_n_choices(*args)
|
510 |
-
|
511 |
-
def set_stop_sequence(self, *args):
|
512 |
-
self.model.set_stop_sequence(*args)
|
513 |
-
|
514 |
-
def set_max_tokens(self, *args):
|
515 |
-
self.model.set_max_tokens(*args)
|
516 |
-
|
517 |
-
def set_presence_penalty(self, *args):
|
518 |
-
self.model.set_presence_penalty(*args)
|
519 |
-
|
520 |
-
def set_frequency_penalty(self, *args):
|
521 |
-
self.model.set_frequency_penalty(*args)
|
522 |
-
|
523 |
-
def set_logit_bias(self, *args):
|
524 |
-
self.model.set_logit_bias(*args)
|
525 |
-
|
526 |
-
def set_user_identifier(self, *args):
|
527 |
-
self.model.set_user_identifier(*args)
|
528 |
-
|
529 |
-
def set_single_turn(self, *args):
|
530 |
-
self.model.set_single_turn(*args)
|
531 |
-
|
532 |
-
|
533 |
|
534 |
|
535 |
if __name__ == "__main__":
|
@@ -538,7 +454,7 @@ if __name__ == "__main__":
|
|
538 |
# set logging level to debug
|
539 |
logging.basicConfig(level=logging.DEBUG)
|
540 |
# client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
|
541 |
-
client =
|
542 |
chatbot = []
|
543 |
stream = False
|
544 |
# 测试账单功能
|
|
|
207 |
continue
|
208 |
if error_msg:
|
209 |
raise Exception(error_msg)
|
210 |
+
|
211 |
|
212 |
class ChatGLM_Client(BaseLLMModel):
|
213 |
def __init__(self, model_name) -> None:
|
214 |
super().__init__(model_name=model_name)
|
215 |
from transformers import AutoTokenizer, AutoModel
|
216 |
import torch
|
217 |
+
global CHATGLM_TOKENIZER, CHATGLM_MODEL
|
218 |
+
if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:
|
219 |
+
system_name = platform.system()
|
220 |
+
model_path=None
|
221 |
+
if os.path.exists("models"):
|
222 |
+
model_dirs = os.listdir("models")
|
223 |
+
if model_name in model_dirs:
|
224 |
+
model_path = f"models/{model_name}"
|
225 |
+
if model_path is not None:
|
226 |
+
model_source = model_path
|
227 |
+
else:
|
228 |
+
model_source = f"THUDM/{model_name}"
|
229 |
+
CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
model_source, trust_remote_code=True
|
231 |
+
)
|
232 |
+
quantified = False
|
233 |
+
if "int4" in model_name:
|
234 |
+
quantified = True
|
235 |
+
if quantified:
|
236 |
+
model = AutoModel.from_pretrained(
|
237 |
+
model_source, trust_remote_code=True
|
238 |
+
).half()
|
239 |
+
else:
|
240 |
+
model = AutoModel.from_pretrained(
|
241 |
+
model_source, trust_remote_code=True
|
242 |
+
).half()
|
243 |
+
if torch.cuda.is_available():
|
244 |
+
# run on CUDA
|
245 |
+
logging.info("CUDA is available, using CUDA")
|
246 |
+
model = model.cuda()
|
247 |
+
# mps加速还存在一些问题,暂时不使用
|
248 |
+
elif system_name == "Darwin" and model_path is not None and not quantified:
|
249 |
+
logging.info("Running on macOS, using MPS")
|
250 |
+
# running on macOS and model already downloaded
|
251 |
+
model = model.to("mps")
|
252 |
+
else:
|
253 |
+
logging.info("GPU is not available, using CPU")
|
254 |
+
model = model.eval()
|
255 |
+
CHATGLM_MODEL = model
|
256 |
|
257 |
def _get_glm_style_input(self):
|
258 |
history = [x["content"] for x in self.history]
|
|
|
266 |
|
267 |
def get_answer_at_once(self):
|
268 |
history, query = self._get_glm_style_input()
|
269 |
+
response, _ = CHATGLM_MODEL.chat(CHATGLM_TOKENIZER, query, history=history)
|
270 |
return response, len(response)
|
271 |
|
272 |
def get_answer_stream_iter(self):
|
273 |
history, query = self._get_glm_style_input()
|
274 |
+
for response, history in CHATGLM_MODEL.stream_chat(
|
275 |
+
CHATGLM_TOKENIZER,
|
276 |
query,
|
277 |
history,
|
278 |
max_length=self.token_upper_limit,
|
|
|
293 |
from lmflow.pipeline.auto_pipeline import AutoPipeline
|
294 |
from lmflow.models.auto_model import AutoModel
|
295 |
from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments
|
296 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
self.max_generation_token = 1000
|
298 |
+
self.end_string = "\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
# We don't need input data
|
300 |
data_args = DatasetArguments(dataset_path=None)
|
301 |
self.dataset = Dataset(data_args)
|
302 |
|
303 |
+
global LLAMA_MODEL, LLAMA_INFERENCER
|
304 |
+
if LLAMA_MODEL is None or LLAMA_INFERENCER is None:
|
305 |
+
model_path = None
|
306 |
+
if os.path.exists("models"):
|
307 |
+
model_dirs = os.listdir("models")
|
308 |
+
if model_name in model_dirs:
|
309 |
+
model_path = f"models/{model_name}"
|
310 |
+
if model_path is not None:
|
311 |
+
model_source = model_path
|
312 |
+
else:
|
313 |
+
model_source = f"decapoda-research/{model_name}"
|
314 |
+
# raise Exception(f"models目录下没有这个模型: {model_name}")
|
315 |
+
if lora_path is not None:
|
316 |
+
lora_path = f"lora/{lora_path}"
|
317 |
+
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
|
318 |
+
pipeline_args = InferencerArguments(local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
319 |
+
|
320 |
+
with open(pipeline_args.deepspeed, "r") as f:
|
321 |
+
ds_config = json.load(f)
|
322 |
+
LLAMA_MODEL = AutoModel.get_model(
|
323 |
+
model_args,
|
324 |
+
tune_strategy="none",
|
325 |
+
ds_config=ds_config,
|
326 |
+
)
|
327 |
+
LLAMA_INFERENCER = AutoPipeline.get_pipeline(
|
328 |
+
pipeline_name="inferencer",
|
329 |
+
model_args=model_args,
|
330 |
+
data_args=data_args,
|
331 |
+
pipeline_args=pipeline_args,
|
332 |
+
)
|
333 |
# Chats
|
334 |
+
# model_name = model_args.model_name_or_path
|
335 |
+
# if model_args.lora_model_path is not None:
|
336 |
+
# model_name += f" + {model_args.lora_model_path}"
|
337 |
|
338 |
# context = (
|
339 |
# "You are a helpful assistant who follows the given instructions"
|
340 |
# " unconditionally."
|
341 |
# )
|
342 |
+
|
343 |
|
344 |
def _get_llama_style_input(self):
|
345 |
history = []
|
|
|
359 |
{"type": "text_only", "instances": [{"text": context}]}
|
360 |
)
|
361 |
|
362 |
+
output_dataset = LLAMA_INFERENCER.inference(
|
363 |
+
model=LLAMA_MODEL,
|
364 |
dataset=input_dataset,
|
365 |
max_new_tokens=self.max_generation_token,
|
366 |
temperature=self.temperature,
|
|
|
377 |
input_dataset = self.dataset.from_dict(
|
378 |
{"type": "text_only", "instances": [{"text": context+partial_text}]}
|
379 |
)
|
380 |
+
output_dataset = LLAMA_INFERENCER.inference(
|
381 |
+
model=LLAMA_MODEL,
|
382 |
dataset=input_dataset,
|
383 |
max_new_tokens=step,
|
384 |
temperature=self.temperature,
|
|
|
390 |
yield partial_text
|
391 |
|
392 |
|
393 |
+
def get_model(
|
394 |
+
model_name,
|
395 |
+
lora_model_path=None,
|
396 |
+
access_key=None,
|
397 |
+
temperature=None,
|
398 |
+
top_p=None,
|
399 |
+
system_prompt=None,
|
400 |
+
) -> BaseLLMModel:
|
401 |
+
msg = f"模型设置为了: {model_name}"
|
402 |
+
model_type = ModelType.get_type(model_name)
|
403 |
+
lora_selector_visibility = False
|
404 |
+
lora_choices = []
|
405 |
+
dont_change_lora_selector = False
|
406 |
+
if model_type != ModelType.OpenAI:
|
407 |
+
config.local_embedding = True
|
408 |
+
# del current_model.model
|
409 |
+
model = None
|
410 |
+
try:
|
411 |
+
if model_type == ModelType.OpenAI:
|
412 |
+
logging.info(f"正在加载OpenAI模型: {model_name}")
|
413 |
+
model = OpenAIClient(
|
414 |
+
model_name=model_name,
|
415 |
+
api_key=access_key,
|
416 |
+
system_prompt=system_prompt,
|
417 |
+
temperature=temperature,
|
418 |
+
top_p=top_p,
|
419 |
+
)
|
420 |
+
elif model_type == ModelType.ChatGLM:
|
421 |
+
logging.info(f"正在加载ChatGLM模型: {model_name}")
|
422 |
+
model = ChatGLM_Client(model_name)
|
423 |
+
elif model_type == ModelType.LLaMA and lora_model_path == "":
|
424 |
+
msg = f"现在请为 {model_name} 选择LoRA模型"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
logging.info(msg)
|
426 |
+
lora_selector_visibility = True
|
427 |
+
if os.path.isdir("lora"):
|
428 |
+
lora_choices = get_file_names("lora", plain=True, filetypes=[""])
|
429 |
+
lora_choices = ["No LoRA"] + lora_choices
|
430 |
+
elif model_type == ModelType.LLaMA and lora_model_path != "":
|
431 |
+
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
|
432 |
+
dont_change_lora_selector = True
|
433 |
+
if lora_model_path == "No LoRA":
|
434 |
+
lora_model_path = None
|
435 |
+
msg += " + No LoRA"
|
436 |
+
else:
|
437 |
+
msg += f" + {lora_model_path}"
|
438 |
+
model = LLaMA_Client(model_name, lora_model_path)
|
439 |
+
elif model_type == ModelType.Unknown:
|
440 |
+
raise ValueError(f"未知模型: {model_name}")
|
441 |
+
logging.info(msg)
|
442 |
+
except Exception as e:
|
443 |
+
logging.error(e)
|
444 |
+
msg = f"{STANDARD_ERROR_MSG}: {e}"
|
445 |
+
if dont_change_lora_selector:
|
446 |
+
return model, msg
|
447 |
+
else:
|
448 |
+
return model, msg, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
|
451 |
if __name__ == "__main__":
|
|
|
454 |
# set logging level to debug
|
455 |
logging.basicConfig(level=logging.DEBUG)
|
456 |
# client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
|
457 |
+
client = get_model(model_name="chatglm-6b-int4")
|
458 |
chatbot = []
|
459 |
stream = False
|
460 |
# 测试账单功能
|
modules/presets.py
CHANGED
@@ -4,6 +4,11 @@ from pathlib import Path
|
|
4 |
|
5 |
import gradio as gr
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
# ChatGPT 设置
|
8 |
INITIAL_SYSTEM_PROMPT = "You are a helpful assistant."
|
9 |
API_HOST = "api.openai.com"
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
|
7 |
+
CHATGLM_MODEL = None
|
8 |
+
CHATGLM_TOKENIZER = None
|
9 |
+
LLAMA_MODEL = None
|
10 |
+
LLAMA_INFERENCER = None
|
11 |
+
|
12 |
# ChatGPT 设置
|
13 |
INITIAL_SYSTEM_PROMPT = "You are a helpful assistant."
|
14 |
API_HOST = "api.openai.com"
|
modules/utils.py
CHANGED
@@ -33,6 +33,82 @@ if TYPE_CHECKING:
|
|
33 |
class DataframeData(TypedDict):
|
34 |
headers: List[str]
|
35 |
data: List[List[str | int | bool]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
def count_token(message):
|
|
|
33 |
class DataframeData(TypedDict):
|
34 |
headers: List[str]
|
35 |
data: List[List[str | int | bool]]
|
36 |
+
|
37 |
+
def predict(current_model, *args):
|
38 |
+
iter = current_model.predict(*args)
|
39 |
+
for i in iter:
|
40 |
+
yield i
|
41 |
+
|
42 |
+
def billing_info(current_model):
|
43 |
+
return current_model.billing_info()
|
44 |
+
|
45 |
+
def set_key(current_model, *args):
|
46 |
+
return current_model.set_key(*args)
|
47 |
+
|
48 |
+
def load_chat_history(current_model, *args):
|
49 |
+
return current_model.load_chat_history(*args)
|
50 |
+
|
51 |
+
def interrupt(current_model, *args):
|
52 |
+
return current_model.interrupt(*args)
|
53 |
+
|
54 |
+
def reset(current_model, *args):
|
55 |
+
return current_model.reset(*args)
|
56 |
+
|
57 |
+
def retry(current_model, *args):
|
58 |
+
iter = current_model.retry(*args)
|
59 |
+
for i in iter:
|
60 |
+
yield i
|
61 |
+
|
62 |
+
def delete_first_conversation(current_model, *args):
|
63 |
+
return current_model.delete_first_conversation(*args)
|
64 |
+
|
65 |
+
def delete_last_conversation(current_model, *args):
|
66 |
+
return current_model.delete_last_conversation(*args)
|
67 |
+
|
68 |
+
def set_system_prompt(current_model, *args):
|
69 |
+
return current_model.set_system_prompt(*args)
|
70 |
+
|
71 |
+
def save_chat_history(current_model, *args):
|
72 |
+
return current_model.save_chat_history(*args)
|
73 |
+
|
74 |
+
def export_markdown(current_model, *args):
|
75 |
+
return current_model.export_markdown(*args)
|
76 |
+
|
77 |
+
def load_chat_history(current_model, *args):
|
78 |
+
return current_model.load_chat_history(*args)
|
79 |
+
|
80 |
+
def set_token_upper_limit(current_model, *args):
|
81 |
+
return current_model.set_token_upper_limit(*args)
|
82 |
+
|
83 |
+
def set_temperature(current_model, *args):
|
84 |
+
current_model.set_temperature(*args)
|
85 |
+
|
86 |
+
def set_top_p(current_model, *args):
|
87 |
+
current_model.set_top_p(*args)
|
88 |
+
|
89 |
+
def set_n_choices(current_model, *args):
|
90 |
+
current_model.set_n_choices(*args)
|
91 |
+
|
92 |
+
def set_stop_sequence(current_model, *args):
|
93 |
+
current_model.set_stop_sequence(*args)
|
94 |
+
|
95 |
+
def set_max_tokens(current_model, *args):
|
96 |
+
current_model.set_max_tokens(*args)
|
97 |
+
|
98 |
+
def set_presence_penalty(current_model, *args):
|
99 |
+
current_model.set_presence_penalty(*args)
|
100 |
+
|
101 |
+
def set_frequency_penalty(current_model, *args):
|
102 |
+
current_model.set_frequency_penalty(*args)
|
103 |
+
|
104 |
+
def set_logit_bias(current_model, *args):
|
105 |
+
current_model.set_logit_bias(*args)
|
106 |
+
|
107 |
+
def set_user_identifier(current_model, *args):
|
108 |
+
current_model.set_user_identifier(*args)
|
109 |
+
|
110 |
+
def set_single_turn(current_model, *args):
|
111 |
+
current_model.set_single_turn(*args)
|
112 |
|
113 |
|
114 |
def count_token(message):
|