Spaces:
Sleeping
Sleeping
from langchain.chains.summarize import load_summarize_chain | |
from langchain import OpenAI, PromptTemplate, LLMChain | |
from langchain.chat_models import ChatOpenAI | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.chains.mapreduce import MapReduceChain | |
from langchain.prompts import PromptTemplate | |
from langchain.text_splitter import TokenTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from langchain.agents import load_tools | |
from langchain.agents import initialize_agent | |
from langchain.agents import AgentType | |
from langchain.docstore.document import Document | |
from langchain.tools import BaseTool, StructuredTool, Tool, tool | |
from langchain.callbacks.stdout import StdOutCallbackHandler | |
from langchain.callbacks.manager import BaseCallbackManager | |
from pydantic import BaseModel, Field | |
import requests | |
from bs4 import BeautifulSoup | |
from .base_model import BaseLLMModel | |
from ..config import default_chuanhu_assistant_model | |
from ..presets import SUMMARIZE_PROMPT | |
import logging | |
class WebBrowsingInput(BaseModel): | |
url: str = Field(description="URL of a webpage") | |
class WebAskingInput(BaseModel): | |
url: str = Field(description="URL of a webpage") | |
question: str = Field(description="Question that you want to know the answer to, based on the webpage's content.") | |
class ChuanhuAgent_Client(BaseLLMModel): | |
def __init__(self, model_name, openai_api_key, user_name="") -> None: | |
super().__init__(model_name=model_name, user=user_name) | |
self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30) | |
self.api_key = openai_api_key | |
self.llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name=default_chuanhu_assistant_model) | |
PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"]) | |
self.summarize_chain = load_summarize_chain(self.llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT) | |
if "Pro" in self.model_name: | |
self.tools = load_tools(["google-search-results-json", "llm-math", "arxiv", "wikipedia", "wolfram-alpha"], llm=self.llm) | |
else: | |
self.tools = load_tools(["ddg-search", "llm-math", "arxiv", "wikipedia"], llm=self.llm) | |
self.tools.append( | |
Tool.from_function( | |
func=self.summary_url, | |
name="Summary Webpage", | |
description="useful when you need to know the overall content of a webpage.", | |
args_schema=WebBrowsingInput | |
) | |
) | |
self.tools.append( | |
StructuredTool.from_function( | |
func=self.ask_url, | |
name="Ask Webpage", | |
description="useful when you need to ask detailed questions about a webpage.", | |
args_schema=WebAskingInput | |
) | |
) | |
def summary(self, text): | |
texts = Document(page_content=text) | |
texts = self.text_splitter.split_documents([texts]) | |
return self.summarize_chain({"input_documents": texts}, return_only_outputs=True)["output_text"] | |
def fetch_url_content(self, url): | |
response = requests.get(url) | |
soup = BeautifulSoup(response.text, 'html.parser') | |
# 提取所有的文本 | |
text = ''.join(s.getText() for s in soup.find_all('p')) | |
logging.info(f"Extracted text from {url}") | |
return text | |
def summary_url(self, url): | |
text = self.fetch_url_content(url) | |
text_summary = self.summary(text) | |
url_content = "webpage content summary:\n" + text_summary | |
return url_content | |
def ask_url(self, url, question): | |
text = self.fetch_url_content(url) | |
texts = Document(page_content=text) | |
texts = self.text_splitter.split_documents([texts]) | |
# use embedding | |
embeddings = OpenAIEmbeddings(openai_api_key=self.api_key) | |
# create vectorstore | |
db = FAISS.from_documents(texts, embeddings) | |
retriever = db.as_retriever() | |
qa = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff", retriever=retriever) | |
return qa.run(f"{question} Reply in 中文") | |
def get_answer_at_once(self): | |
question = self.history[-1]["content"] | |
manager = BaseCallbackManager(handlers=[StdOutCallbackHandler()]) | |
# llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") | |
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager) | |
reply = agent.run(input=f"{question} Reply in 简体中文") | |
return reply, -1 | |