Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList | |
import time | |
import numpy as np | |
from torch.nn import functional as F | |
import os | |
from .base_model import BaseLLMModel | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [50278, 50279, 50277, 1, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
class StableLM_Client(BaseLLMModel): | |
def __init__(self, model_name) -> None: | |
super().__init__(model_name=model_name) | |
print(f"Starting to load StableLM to memory") | |
self.model = AutoModelForCausalLM.from_pretrained( | |
"stabilityai/stablelm-tuned-alpha-7b", torch_dtype=torch.float16).cuda() | |
self.tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b") | |
self.generator = pipeline('text-generation', model=self.model, tokenizer=self.tokenizer, device=0) | |
print(f"Sucessfully loaded StableLM to the memory") | |
self.system_prompt = """StableAssistant | |
- StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI. | |
- StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. | |
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes. | |
- StableAssistant will refuse to participate in anything that could harm a human.""" | |
def user(self, user_message, history): | |
history = history + [[user_message, ""]] | |
return "", history, history | |
def bot(self, history, curr_system_message): | |
messages = f"<|SYSTEM|># {self.system_prompt}" + \ | |
"".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) | |
for item in history]) | |
output = self.generate(messages) | |
history[-1][1] = output | |
time.sleep(1) | |
return history, history | |
def _get_stablelm_style_input(self): | |
messages = self.system_prompt + \ | |
"".join(["".join(["<|USER|>"+self.history[i]["content"], "<|ASSISTANT|>"+self.history[i + 1]["content"]]) | |
for i in range(0, len(self.history), 2)]) | |
return messages | |
def generate(self, text, bad_text=None): | |
stop = StopOnTokens() | |
result = self.generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True, | |
temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop])) | |
return result[0]["generated_text"].replace(text, "") | |
def contrastive_generate(self, text, bad_text): | |
with torch.no_grad(): | |
tokens = self.tokenizer(text, return_tensors="pt")[ | |
'input_ids'].cuda()[:, :4096-1024] | |
bad_tokens = self.tokenizer(bad_text, return_tensors="pt")[ | |
'input_ids'].cuda()[:, :4096-1024] | |
history = None | |
bad_history = None | |
curr_output = list() | |
for i in range(1024): | |
out = self.model(tokens, past_key_values=history, use_cache=True) | |
logits = out.logits | |
history = out.past_key_values | |
bad_out = self.model(bad_tokens, past_key_values=bad_history, | |
use_cache=True) | |
bad_logits = bad_out.logits | |
bad_history = bad_out.past_key_values | |
probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu() | |
bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu() | |
logits = torch.log(probs) | |
bad_logits = torch.log(bad_probs) | |
logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1] | |
probs = F.softmax(logits) | |
out = int(torch.multinomial(probs, 1)) | |
if out in [50278, 50279, 50277, 1, 0]: | |
break | |
else: | |
curr_output.append(out) | |
out = np.array([out]) | |
tokens = torch.from_numpy(np.array([out])).to( | |
tokens.device) | |
bad_tokens = torch.from_numpy(np.array([out])).to( | |
tokens.device) | |
return self.tokenizer.decode(curr_output) | |
def get_answer_at_once(self): | |
messages = self._get_stablelm_style_input() | |
return self.generate(messages) | |