johnsmith253325
修正大小写和路径问题
6e4855e
raw
history blame
4.61 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList
import time
import numpy as np
from torch.nn import functional as F
import os
from .base_model import BaseLLMModel
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [50278, 50279, 50277, 1, 0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
class StableLM_Client(BaseLLMModel):
def __init__(self, model_name) -> None:
super().__init__(model_name=model_name)
print(f"Starting to load StableLM to memory")
self.model = AutoModelForCausalLM.from_pretrained(
"stabilityai/stablelm-tuned-alpha-7b", torch_dtype=torch.float16).cuda()
self.tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b")
self.generator = pipeline('text-generation', model=self.model, tokenizer=self.tokenizer, device=0)
print(f"Sucessfully loaded StableLM to the memory")
self.system_prompt = """StableAssistant
- StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
- StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
- StableAssistant will refuse to participate in anything that could harm a human."""
def user(self, user_message, history):
history = history + [[user_message, ""]]
return "", history, history
def bot(self, history, curr_system_message):
messages = f"<|SYSTEM|># {self.system_prompt}" + \
"".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]])
for item in history])
output = self.generate(messages)
history[-1][1] = output
time.sleep(1)
return history, history
def _get_stablelm_style_input(self):
messages = self.system_prompt + \
"".join(["".join(["<|USER|>"+self.history[i]["content"], "<|ASSISTANT|>"+self.history[i + 1]["content"]])
for i in range(0, len(self.history), 2)])
return messages
def generate(self, text, bad_text=None):
stop = StopOnTokens()
result = self.generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True,
temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop]))
return result[0]["generated_text"].replace(text, "")
def contrastive_generate(self, text, bad_text):
with torch.no_grad():
tokens = self.tokenizer(text, return_tensors="pt")[
'input_ids'].cuda()[:, :4096-1024]
bad_tokens = self.tokenizer(bad_text, return_tensors="pt")[
'input_ids'].cuda()[:, :4096-1024]
history = None
bad_history = None
curr_output = list()
for i in range(1024):
out = self.model(tokens, past_key_values=history, use_cache=True)
logits = out.logits
history = out.past_key_values
bad_out = self.model(bad_tokens, past_key_values=bad_history,
use_cache=True)
bad_logits = bad_out.logits
bad_history = bad_out.past_key_values
probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu()
bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu()
logits = torch.log(probs)
bad_logits = torch.log(bad_probs)
logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1]
probs = F.softmax(logits)
out = int(torch.multinomial(probs, 1))
if out in [50278, 50279, 50277, 1, 0]:
break
else:
curr_output.append(out)
out = np.array([out])
tokens = torch.from_numpy(np.array([out])).to(
tokens.device)
bad_tokens = torch.from_numpy(np.array([out])).to(
tokens.device)
return self.tokenizer.decode(curr_output)
def get_answer_at_once(self):
messages = self._get_stablelm_style_input()
return self.generate(messages)