File size: 4,755 Bytes
9813f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5ddb7e
9813f91
b5ddb7e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import logging
import traceback

import openai
import gradio as gr
import ujson as json

import modules.presets as presets
from modules.utils import get_file_hash
from modules.presets import i18n

def excel_to_jsonl(filepath, preview=False):
    jsonl = []
    with open(filepath, "rb") as f:
        import pandas as pd
        df = pd.read_excel(f)
        for row in df.iterrows():
            jsonl.append(row[1].to_dict())
            if preview:
                break
    return jsonl

def jsonl_save_to_disk(jsonl, filepath):
    file_hash = get_file_hash(file_paths = [filepath])
    os.makedirs("files", exist_ok=True)
    save_path = f"files/{file_hash}.jsonl"
    with open(save_path, "w") as f:
        f.write("\n".join([json.dumps(i, ensure_ascii=False) for i in jsonl]))
    return save_path

def handle_dataset_selection(file_src):
    logging.info(f"Loading dataset {file_src.name}...")
    preview = ""
    if file_src.name.endswith(".jsonl"):
        with open(file_src.name, "r") as f:
            preview = f.readline()
    else:
        preview = excel_to_jsonl(file_src.name)[0]
    return preview, gr.update(interactive=True), "预估数据集 token 数量: 这个功能还没实现"

def upload_to_openai(file_src):
    openai.api_key = os.getenv("OPENAI_API_KEY")
    dspath = file_src.name
    msg = ""
    logging.info(f"Uploading dataset {dspath}...")
    if dspath.endswith(".xlsx"):
        jsonl = excel_to_jsonl(dspath)
        tmp_jsonl = []
        for i in jsonl:
            if "提问" in i and "答案" in i:
                if "系统" in i :
                    tmp_jsonl.append({
                        "messages":[
                            {"role": "system", "content": i["系统"]},
                            {"role": "user", "content": i["提问"]},
                            {"role": "assistant", "content": i["答案"]}
                        ]
                    })
                else:
                    tmp_jsonl.append({
                        "messages":[
                            {"role": "user", "content": i["提问"]},
                            {"role": "assistant", "content": i["答案"]}
                        ]
                    })
            else:
                logging.warning(f"跳过一行数据,因为没有找到提问和答案: {i}")
        jsonl = tmp_jsonl
        dspath = jsonl_save_to_disk(jsonl, dspath)
    try:
        uploaded = openai.File.create(
            file=open(dspath, "rb"),
            purpose='fine-tune'
            )
        return uploaded.id, f"上传成功,文件ID: {uploaded.id}"
    except Exception as e:
        traceback.print_exc()
        return "", f"上传失败,原因:{ e }"

def build_event_description(id, status, trained_tokens, name=i18n("暂时未知")):
    # convert to markdown
    return f"""
    #### 训练任务 {id}

    模型名称:{name}

    状态:{status}

    已经训练了 {trained_tokens} 个token
    """

def start_training(file_id, suffix, epochs):
    openai.api_key = os.getenv("OPENAI_API_KEY")
    try:
        job = openai.FineTuningJob.create(training_file=file_id, model="gpt-3.5-turbo", suffix=suffix, hyperparameters={"n_epochs": epochs})
        return build_event_description(job.id, job.status, job.trained_tokens)
    except Exception as e:
        traceback.print_exc()
        if "is not ready" in str(e):
            return "训练出错,因为文件还没准备好。OpenAI 需要一点时间准备文件,过几分钟再来试试。"
        return f"训练失败,原因:{ e }"

def get_training_status():
    openai.api_key = os.getenv("OPENAI_API_KEY")
    active_jobs = [build_event_description(job["id"], job["status"], job["trained_tokens"], job["fine_tuned_model"]) for job in openai.FineTuningJob.list(limit=10)["data"] if job["status"] != "cancelled"]
    return "\n\n".join(active_jobs), gr.update(interactive=True) if len(active_jobs) > 0 else gr.update(interactive=False)

def handle_dataset_clear():
    return gr.update(value=None), gr.update(interactive=False)

def add_to_models():
    openai.api_key = os.getenv("OPENAI_API_KEY")
    succeeded_jobs = [job for job in openai.FineTuningJob.list()["data"] if job["status"] == "succeeded"]
    presets.MODELS.extend([job["fine_tuned_model"] for job in succeeded_jobs])
    return gr.update(choices=presets.MODELS), f"成功添加了 {len(succeeded_jobs)} 个模型。"

def cancel_all_jobs():
    openai.api_key = os.getenv("OPENAI_API_KEY")
    jobs = [job for job in openai.FineTuningJob.list()["data"] if job["status"] not in ["cancelled", "succeeded"]]
    for job in jobs:
        openai.FineTuningJob.cancel(job["id"])
    return f"成功取消了 {len(jobs)} 个训练任务。"