File size: 5,724 Bytes
abbba03
66e5db6
abbba03
 
 
 
 
 
 
 
 
 
 
 
66e5db6
abbba03
 
66e5db6
 
 
 
 
 
abbba03
 
 
 
66e5db6
 
abbba03
66e5db6
abbba03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e5db6
abbba03
66e5db6
abbba03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e5db6
abbba03
 
 
 
 
66e5db6
abbba03
 
66e5db6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from langchain.chains.summarize import load_summarize_chain
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.text_splitter import TokenTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.docstore.document import Document
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.callbacks.stdout import StdOutCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.manager import BaseCallbackManager

from typing import Any, Dict, List, Optional, Union

from langchain.callbacks.base import BaseCallbackHandler
from langchain.input import print_text
from langchain.schema import AgentAction, AgentFinish, LLMResult

from pydantic import BaseModel, Field

import requests
from bs4 import BeautifulSoup
from threading import Thread, Condition
from collections import deque

from .base_model import BaseLLMModel, CallbackToIterator, ChuanhuCallbackHandler
from ..config import default_chuanhu_assistant_model
from ..presets import SUMMARIZE_PROMPT
import logging

class WebBrowsingInput(BaseModel):
    url: str = Field(description="URL of a webpage")

class WebAskingInput(BaseModel):
    url: str = Field(description="URL of a webpage")
    question: str = Field(description="Question that you want to know the answer to, based on the webpage's content.")


class ChuanhuAgent_Client(BaseLLMModel):
    def __init__(self, model_name, openai_api_key, user_name="") -> None:
        super().__init__(model_name=model_name, user=user_name)
        self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
        self.api_key = openai_api_key
        self.llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name=default_chuanhu_assistant_model)
        self.cheap_llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name="gpt-3.5-turbo")
        PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"])
        self.summarize_chain = load_summarize_chain(self.cheap_llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
        if "Pro" in self.model_name:
            self.tools = load_tools(["google-search-results-json", "llm-math", "arxiv", "wikipedia", "wolfram-alpha"], llm=self.llm)
        else:
            self.tools = load_tools(["ddg-search", "llm-math", "arxiv", "wikipedia"], llm=self.llm)

        self.tools.append(
            Tool.from_function(
                func=self.summary_url,
                name="Summary Webpage",
                description="useful when you need to know the overall content of a webpage.",
                args_schema=WebBrowsingInput
            )
        )

        self.tools.append(
            StructuredTool.from_function(
                func=self.ask_url,
                name="Ask Webpage",
                description="useful when you need to ask detailed questions about a webpage.",
                args_schema=WebAskingInput
            )
        )

    def summary(self, text):
        texts = Document(page_content=text)
        texts = self.text_splitter.split_documents([texts])
        return self.summarize_chain({"input_documents": texts}, return_only_outputs=True)["output_text"]

    def fetch_url_content(self, url):
        response = requests.get(url)
        soup = BeautifulSoup(response.text, 'html.parser')

        # 提取所有的文本
        text = ''.join(s.getText() for s in soup.find_all('p'))
        logging.info(f"Extracted text from {url}")
        return text

    def summary_url(self, url):
        text = self.fetch_url_content(url)
        text_summary = self.summary(text)
        url_content = "webpage content summary:\n" + text_summary

        return url_content

    def ask_url(self, url, question):
        text = self.fetch_url_content(url)
        texts = Document(page_content=text)
        texts = self.text_splitter.split_documents([texts])
        # use embedding
        embeddings = OpenAIEmbeddings(openai_api_key=self.api_key)

        # create vectorstore
        db = FAISS.from_documents(texts, embeddings)
        retriever = db.as_retriever()
        qa = RetrievalQA.from_chain_type(llm=self.cheap_llm, chain_type="stuff", retriever=retriever)
        return qa.run(f"{question} Reply in 中文")

    def get_answer_at_once(self):
        question = self.history[-1]["content"]
        # llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
        agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
        reply = agent.run(input=f"{question} Reply in 简体中文")
        return reply, -1

    def get_answer_stream_iter(self):
        question = self.history[-1]["content"]
        it = CallbackToIterator()
        manager = BaseCallbackManager(handlers=[ChuanhuCallbackHandler(it.callback)])
        def thread_func():
            agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager)
            reply = agent.run(input=f"{question} Reply in 简体中文")
            it.callback(reply)
            it.finish()
        t = Thread(target=thread_func)
        t.start()
        partial_text = ""
        for value in it:
            partial_text += value
            yield partial_text