File size: 8,252 Bytes
abbba03
66e5db6
abbba03
 
 
 
 
 
 
 
 
 
 
 
66e5db6
abbba03
 
66e5db6
 
 
 
 
 
abbba03
 
 
 
66e5db6
 
abbba03
66e5db6
abbba03
5879508
 
 
 
 
 
abbba03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e5db6
abbba03
66e5db6
5879508
 
abbba03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5879508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed36f84
5879508
 
 
 
 
 
 
 
 
 
 
abbba03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e5db6
abbba03
 
 
 
 
66e5db6
abbba03
 
66e5db6
 
 
 
 
 
5879508
 
 
 
 
 
 
 
 
 
66e5db6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from langchain.chains.summarize import load_summarize_chain
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.text_splitter import TokenTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.docstore.document import Document
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.callbacks.stdout import StdOutCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.manager import BaseCallbackManager

from typing import Any, Dict, List, Optional, Union

from langchain.callbacks.base import BaseCallbackHandler
from langchain.input import print_text
from langchain.schema import AgentAction, AgentFinish, LLMResult

from pydantic import BaseModel, Field

import requests
from bs4 import BeautifulSoup
from threading import Thread, Condition
from collections import deque

from .base_model import BaseLLMModel, CallbackToIterator, ChuanhuCallbackHandler
from ..config import default_chuanhu_assistant_model
from ..presets import SUMMARIZE_PROMPT, i18n
from ..index_func import construct_index

from langchain.callbacks import get_openai_callback
import os
import gradio as gr
import logging

class WebBrowsingInput(BaseModel):
    url: str = Field(description="URL of a webpage")

class WebAskingInput(BaseModel):
    url: str = Field(description="URL of a webpage")
    question: str = Field(description="Question that you want to know the answer to, based on the webpage's content.")


class ChuanhuAgent_Client(BaseLLMModel):
    def __init__(self, model_name, openai_api_key, user_name="") -> None:
        super().__init__(model_name=model_name, user=user_name)
        self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
        self.api_key = openai_api_key
        self.llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name=default_chuanhu_assistant_model)
        self.cheap_llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name="gpt-3.5-turbo")
        PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"])
        self.summarize_chain = load_summarize_chain(self.cheap_llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
        self.index_summary = None
        self.index = None
        if "Pro" in self.model_name:
            self.tools = load_tools(["google-search-results-json", "llm-math", "arxiv", "wikipedia", "wolfram-alpha"], llm=self.llm)
        else:
            self.tools = load_tools(["ddg-search", "llm-math", "arxiv", "wikipedia"], llm=self.llm)

        self.tools.append(
            Tool.from_function(
                func=self.summary_url,
                name="Summary Webpage",
                description="useful when you need to know the overall content of a webpage.",
                args_schema=WebBrowsingInput
            )
        )

        self.tools.append(
            StructuredTool.from_function(
                func=self.ask_url,
                name="Ask Webpage",
                description="useful when you need to ask detailed questions about a webpage.",
                args_schema=WebAskingInput
            )
        )

    def handle_file_upload(self, files, chatbot, language):
        """if the model accepts multi modal input, implement this function"""
        status = gr.Markdown.update()
        if files:
            index = construct_index(self.api_key, file_src=files)
            assert index is not None, "获取索引失败"
            self.index = index
            status = i18n("索引构建完成")
            # Summarize the document
            logging.info(i18n("生成内容总结中……"))
            with get_openai_callback() as cb:
                os.environ["OPENAI_API_KEY"] = self.api_key
                from langchain.chains.summarize import load_summarize_chain
                from langchain.prompts import PromptTemplate
                from langchain.chat_models import ChatOpenAI
                prompt_template = "Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN " + language + ":"
                PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
                llm = ChatOpenAI()
                chain = load_summarize_chain(llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
                summary = chain({"input_documents": list(index.docstore.__dict__["_dict"].values())}, return_only_outputs=True)["output_text"]
                logging.info(f"Summary: {summary}")
                self.index_summary = summary
                chatbot.append((f"Uploaded {len(files)} files", summary))
            logging.info(cb)
        return gr.Files.update(), chatbot, status

    def query_index(self, query):
        if self.index is not None:
            retriever = self.index.as_retriever()
            qa = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff", retriever=retriever)
            return qa.run(query)
        else:
            "Error during query."

    def summary(self, text):
        texts = Document(page_content=text)
        texts = self.text_splitter.split_documents([texts])
        return self.summarize_chain({"input_documents": texts}, return_only_outputs=True)["output_text"]

    def fetch_url_content(self, url):
        response = requests.get(url)
        soup = BeautifulSoup(response.text, 'html.parser')

        # 提取所有的文本
        text = ''.join(s.getText() for s in soup.find_all('p'))
        logging.info(f"Extracted text from {url}")
        return text

    def summary_url(self, url):
        text = self.fetch_url_content(url)
        text_summary = self.summary(text)
        url_content = "webpage content summary:\n" + text_summary

        return url_content

    def ask_url(self, url, question):
        text = self.fetch_url_content(url)
        texts = Document(page_content=text)
        texts = self.text_splitter.split_documents([texts])
        # use embedding
        embeddings = OpenAIEmbeddings(openai_api_key=self.api_key)

        # create vectorstore
        db = FAISS.from_documents(texts, embeddings)
        retriever = db.as_retriever()
        qa = RetrievalQA.from_chain_type(llm=self.cheap_llm, chain_type="stuff", retriever=retriever)
        return qa.run(f"{question} Reply in 中文")

    def get_answer_at_once(self):
        question = self.history[-1]["content"]
        # llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
        agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
        reply = agent.run(input=f"{question} Reply in 简体中文")
        return reply, -1

    def get_answer_stream_iter(self):
        question = self.history[-1]["content"]
        it = CallbackToIterator()
        manager = BaseCallbackManager(handlers=[ChuanhuCallbackHandler(it.callback)])
        def thread_func():
            tools = self.tools
            if self.index is not None:
                    tools.append(
                        Tool.from_function(
                        func=self.query_index,
                        name="Query Knowledge Base",
                        description=f"useful when you need to know about: {self.index_summary}",
                        args_schema=WebBrowsingInput
                    )
                )
            agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager)
            reply = agent.run(input=f"{question} Reply in 简体中文")
            it.callback(reply)
            it.finish()
        t = Thread(target=thread_func)
        t.start()
        partial_text = ""
        for value in it:
            partial_text += value
            yield partial_text