Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import HfApi, hf_hub_download, Repository | |
from huggingface_hub.repocard import metadata_load | |
from PIL import Image, ImageDraw, ImageFont | |
from datetime import date | |
import time | |
import os | |
import pandas as pd | |
from utils import * | |
api = HfApi() | |
DATASET_REPO_URL = "https://huggingface.co./datasets/huggingface-projects/Deep-RL-Course-Certification" | |
CERTIFIED_USERS_FILENAME = "certified_users.csv" | |
CERTIFIED_USERS_DIR = "certified_users" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
repo = Repository( | |
local_dir=CERTIFIED_USERS_DIR, clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
def get_user_models(hf_username, env_tag, lib_tag): | |
""" | |
List the Reinforcement Learning models | |
from user given environment and lib | |
:param hf_username: User HF username | |
:param env_tag: Environment tag | |
:param lib_tag: Library tag | |
""" | |
api = HfApi() | |
models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag]) | |
user_model_ids = [x.modelId for x in models] | |
return user_model_ids | |
def get_metadata(model_id): | |
""" | |
Get model metadata (contains evaluation data) | |
:param model_id | |
""" | |
try: | |
readme_path = hf_hub_download(model_id, filename="README.md") | |
return metadata_load(readme_path) | |
except requests.exceptions.HTTPError: | |
# 404 README.md not found | |
return None | |
def parse_metrics_accuracy(meta): | |
""" | |
Get model results and parse it | |
:param meta: model metadata | |
""" | |
if "model-index" not in meta: | |
return None | |
result = meta["model-index"][0]["results"] | |
metrics = result[0]["metrics"] | |
accuracy = metrics[0]["value"] | |
return accuracy | |
def parse_rewards(accuracy): | |
""" | |
Parse mean_reward and std_reward | |
:param accuracy: model results | |
""" | |
default_std = -1000 | |
default_reward= -1000 | |
if accuracy != None: | |
accuracy = str(accuracy) | |
parsed = accuracy.split(' +/- ') | |
if len(parsed)>1: | |
mean_reward = float(parsed[0]) | |
std_reward = float(parsed[1]) | |
elif len(parsed)==1: #only mean reward | |
mean_reward = float(parsed[0]) | |
std_reward = float(0) | |
else: | |
mean_reward = float(default_std) | |
std_reward = float(default_reward) | |
else: | |
mean_reward = float(default_std) | |
std_reward = float(default_reward) | |
return mean_reward, std_reward | |
def calculate_best_result(user_model_ids): | |
""" | |
Calculate the best results of a unit | |
best_result = mean_reward - std_reward | |
:param user_model_ids: RL models of a user | |
""" | |
best_result = -100 | |
best_model_id = "" | |
for model in user_model_ids: | |
meta = get_metadata(model) | |
if meta is None: | |
continue | |
accuracy = parse_metrics_accuracy(meta) | |
mean_reward, std_reward = parse_rewards(accuracy) | |
result = mean_reward - std_reward | |
if result > best_result: | |
best_result = result | |
best_model_id = model | |
return best_result, best_model_id | |
def check_if_passed(model): | |
""" | |
Check if result >= baseline | |
to know if you pass | |
:param model: user model | |
""" | |
if model["best_result"] >= model["min_result"]: | |
model["passed_"] = True | |
def certification(hf_username, first_name, last_name): | |
results_certification = [ | |
{ | |
"unit": "Unit 1", | |
"env": "LunarLander-v2", | |
"library": "stable-baselines3", | |
"min_result": 200, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 2", | |
"env": "Taxi-v3", | |
"library": "q-learning", | |
"min_result": 4, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 3", | |
"env": "SpaceInvadersNoFrameskip-v4", | |
"library": "stable-baselines3", | |
"min_result": 200, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 4", | |
"env": "CartPole-v1", | |
"library": "reinforce", | |
"min_result": 350, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 4", | |
"env": "Pixelcopter-PLE-v0", | |
"library": "reinforce", | |
"min_result": 5, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 5", | |
"env": "ML-Agents-SnowballTarget", | |
"library": "ml-agents", | |
"min_result": -100, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 5", | |
"env": "ML-Agents-Pyramids", | |
"library": "ml-agents", | |
"min_result": -100, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 6", | |
"env": "AntBulletEnv-v0", | |
"library": "stable-baselines3", | |
"min_result": 650, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 6", | |
"env": "PandaReachDense-v2", | |
"library": "stable-baselines3", | |
"min_result": -3.5, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 7", | |
"env": "ML-Agents-SoccerTwos", | |
"library": "ml-agents", | |
"min_result": -100, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 8 PI", | |
"env": "GodotRL-JumperHard", | |
"library": "cleanrl", | |
"min_result": 100, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 8 PII", | |
"env": "Vizdoom-Battle", | |
"library": "cleanrl", | |
"min_result": 100, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
] | |
for unit in results_certification: | |
# Get user model | |
user_models = get_user_models(hf_username, unit['env'], unit['library']) | |
# Calculate the best result and get the best_model_id | |
best_result, best_model_id = calculate_best_result(user_models) | |
# Save best_result and best_model_id | |
unit["best_result"] = best_result | |
unit["best_model_id"] = make_clickable_model(best_model_id) | |
# Based on best_result do we pass the unit? | |
check_if_passed(unit) | |
unit["passed"] = pass_emoji(unit["passed_"]) | |
print(results_certification) | |
df1 = pd.DataFrame(results_certification) | |
df = df1[['passed', 'unit', 'env', 'min_result', 'best_result', 'best_model_id']] | |
certificate, message, pdf, pass_ = verify_certification(results_certification, hf_username, first_name, last_name) | |
print("MESSAGE", message) | |
if pass_: | |
visible = True | |
else: | |
visible = False | |
return message, pdf, certificate, df, output_row.update(visible=visible) | |
""" | |
Verify that the user pass. | |
If yes: | |
- Generate the certification | |
- Send an email | |
- Print the certification | |
If no: | |
- Explain why the user didn't pass yet | |
""" | |
def verify_certification(df, hf_username, first_name, last_name): | |
# Check that we pass | |
model_pass_nb = 0 | |
pass_percentage = 0 | |
pass_ = False | |
for unit in df: | |
if unit["passed_"] is True: | |
model_pass_nb += 1 | |
pass_percentage = (model_pass_nb/12) * 100 | |
print("pass_percentage", pass_percentage) | |
if pass_percentage == 100: | |
pass_ = True | |
# Generate a certificate of excellence | |
certificate, pdf = generate_certificate("./certificate_models/certificate-excellence.png", first_name, last_name) | |
# Add this user to our database | |
add_certified_user(hf_username, first_name, last_name, pass_percentage) | |
# Add a message | |
message = """ | |
Congratulations, you successfully completed the Hugging Face Deep Reinforcement Learning Course π! \n | |
Since you pass 100% of the hands-on you get a Certificate of Excellence π. \n | |
You can download your certificate below β¬οΈ \n | |
Don't hesitate to share your certificate image below on Twitter and Linkedin (you can tag me @ThomasSimonini and @huggingface) π€ | |
""" | |
elif pass_percentage < 100 and pass_percentage >= 80: | |
pass_ = True | |
# Certificate of completion | |
certificate, pdf = generate_certificate("./certificate_models/certificate-completion.png", first_name, last_name) | |
# Add this user to our database | |
add_certified_user(hf_username, first_name, last_name, pass_percentage) | |
# Add a message | |
message = """ | |
Congratulations, you successfully completed the Hugging Face Deep Reinforcement Learning Course π! \n | |
Since you pass 80% of the hands-on you get a Certificate of Completion π. \n | |
You can download your certificate below β¬οΈ \n | |
Don't hesitate to share your certificate image below on Twitter and Linkedin (you can tag me @ThomasSimonini and @huggingface) π€ \n | |
You can try to get a Certificate of Excellence if you pass 100% of the hands-on, don't hesitate to check which unit you didn't pass and update these models. | |
""" | |
else: | |
# Not pass yet | |
certificate, pdf = generate_certificate(Image.new("RGB", (100, 100), (255, 255, 255)), first_name, last_name) | |
# Add a message | |
message = """ | |
You didn't pass the minimum of 80% of the hands-on to get a certificate of completion. But don't be discouraged! \n | |
Check below which units you need to do again to get your certificate πͺ | |
""" | |
print("return certificate") | |
return certificate, message, pdf, pass_ | |
def generate_certificate(certificate_model, first_name, last_name): | |
im = Image.open(certificate_model) | |
d = ImageDraw.Draw(im) | |
name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100) | |
date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48) | |
name = str(first_name) + " " + str(last_name) | |
print("NAME", name) | |
# Debug line name | |
#d.line(((200, 740), (1800, 740)), "gray") | |
#d.line(((1000, 0), (1000, 1400)), "gray") | |
# Name | |
d.text((1000, 740), name, fill="black", anchor="mm", font=name_font) | |
# Debug line date | |
#d.line(((1500, 0), (1500, 1400)), "gray") | |
# Date of certification | |
d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font) | |
pdf = im.convert('RGB') | |
pdf.save('certificate.pdf') | |
return im, "./certificate.pdf" | |
def add_certified_user(hf_username, first_name, last_name, pass_percentage): | |
""" | |
Add the certified user to the database | |
""" | |
print("ADD CERTIFIED USER") | |
repo.git_pull() | |
history = pd.read_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME)) | |
# Check if this hf_username is already in our dataset: | |
check = history.loc[history['hf_username'] == hf_username] | |
if not check.empty: | |
history = history.drop(labels=check.index[0], axis=0) | |
new_row = pd.DataFrame({'hf_username': hf_username, 'first_name': first_name, 'last_name': last_name, 'pass_percentage': pass_percentage, 'datetime': time.time()}, index=[0]) | |
history = pd.concat([new_row, history[:]]).reset_index(drop=True) | |
history.to_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME), index=False) | |
repo.push_to_hub(commit_message="Update certified users list") | |
with gr.Blocks() as demo: | |
gr.Markdown(f""" | |
# Get your Deep Reinforcement Learning Certificate π | |
The certification process is completely free: | |
- To get a *certificate of completion*: you need to **pass 80% of the assignments before the end of April 2023**. | |
- To get a *certificate of honors*: you need to **pass 100% of the assignments before the end of April 2023**. | |
For more information about the certification process [check this](https://huggingface.co./deep-rl-course/communication/certification) | |
Donβt hesitate to share your certificate on Twitter (tag me @ThomasSimonini and @huggingface) and on Linkedin. | |
""") | |
hf_username = gr.Textbox(placeholder="ThomasSimonini", label="Your Hugging Face Username (case sensitive)") | |
first_name = gr.Textbox(placeholder="Jane", label="Your First Name") | |
last_name = gr.Textbox(placeholder="Doe", label="Your Last Name") | |
#email = gr.Textbox(placeholder="[email protected]", label="Your Email (to receive your certificate)") | |
check_progress_button = gr.Button(value="Check if I pass") | |
output_text = gr.components.Textbox() | |
with gr.Row(visible=True) as output_row: | |
output_pdf = gr.File() | |
output_img = gr.components.Image(type="pil") | |
output_dataframe = gr.components.Dataframe(headers=["Pass?", "Unit", "Environment", "Baseline", "Your best result", "Your best model id"], datatype=["markdown", "markdown", "markdown", "number", "number", "markdown", "bool"]) #value= certification(hf_username, first_name, last_name), | |
check_progress_button.click(fn=certification, inputs=[hf_username, first_name, last_name], outputs=[output_text, output_pdf, output_img, output_dataframe, output_row])#[output1, output2]) | |
demo.launch(debug=True) |