" rather than '
Browse files
app.py
CHANGED
@@ -31,7 +31,7 @@ if torch.cuda.device_count() > 0:
|
|
31 |
snapshot_download(repo_id="openai/clip-vit-large-patch14", repo_type="model", local_dir="ckpts/text_encoder_2", force_download=True)
|
32 |
|
33 |
def initialize_model(model_path):
|
34 |
-
print(
|
35 |
if torch.cuda.device_count() == 0:
|
36 |
return None
|
37 |
|
@@ -42,7 +42,7 @@ def initialize_model(model_path):
|
|
42 |
|
43 |
print(f"`models_root` exists: {models_root_path}")
|
44 |
hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(models_root_path, args=args)
|
45 |
-
print(
|
46 |
return hunyuan_video_sampler
|
47 |
|
48 |
model = initialize_model("ckpts")
|
@@ -57,7 +57,7 @@ def generate_video(
|
|
57 |
flow_shift,
|
58 |
embedded_guidance_scale
|
59 |
):
|
60 |
-
print(
|
61 |
return generate_video_gpu(
|
62 |
model,
|
63 |
prompt,
|
@@ -82,16 +82,16 @@ def generate_video_gpu(
|
|
82 |
flow_shift,
|
83 |
embedded_guidance_scale
|
84 |
):
|
85 |
-
print(
|
86 |
if torch.cuda.device_count() == 0:
|
87 |
-
gr.Warning(
|
88 |
return None
|
89 |
|
90 |
seed = None if seed == -1 else seed
|
91 |
width, height = resolution.split("x")
|
92 |
width, height = int(width), int(height)
|
93 |
negative_prompt = "" # not applicable in the inference
|
94 |
-
print(
|
95 |
|
96 |
outputs = model.predict(
|
97 |
prompt=prompt,
|
@@ -108,8 +108,8 @@ def generate_video_gpu(
|
|
108 |
embedded_guidance_scale=embedded_guidance_scale
|
109 |
)
|
110 |
|
111 |
-
print(
|
112 |
-
samples = outputs[
|
113 |
sample = samples[0].unsqueeze(0)
|
114 |
|
115 |
save_path = "./gradio_outputs"
|
@@ -118,9 +118,9 @@ def generate_video_gpu(
|
|
118 |
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%H:%M:%S")
|
119 |
video_path = f"{save_path}/{time_flag}_seed{outputs['seeds'][0]}_{outputs['prompts'][0][:100].replace('/','')}.mp4"
|
120 |
save_videos_grid(sample, video_path, fps=24)
|
121 |
-
logger.info(f
|
122 |
|
123 |
-
print(
|
124 |
return video_path
|
125 |
|
126 |
def create_demo(model_path):
|
|
|
31 |
snapshot_download(repo_id="openai/clip-vit-large-patch14", repo_type="model", local_dir="ckpts/text_encoder_2", force_download=True)
|
32 |
|
33 |
def initialize_model(model_path):
|
34 |
+
print("initialize_model: " + model_path)
|
35 |
if torch.cuda.device_count() == 0:
|
36 |
return None
|
37 |
|
|
|
42 |
|
43 |
print(f"`models_root` exists: {models_root_path}")
|
44 |
hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(models_root_path, args=args)
|
45 |
+
print("Model initialized: " + model_path)
|
46 |
return hunyuan_video_sampler
|
47 |
|
48 |
model = initialize_model("ckpts")
|
|
|
57 |
flow_shift,
|
58 |
embedded_guidance_scale
|
59 |
):
|
60 |
+
print("generate_video (prompt: " + prompt + ")")
|
61 |
return generate_video_gpu(
|
62 |
model,
|
63 |
prompt,
|
|
|
82 |
flow_shift,
|
83 |
embedded_guidance_scale
|
84 |
):
|
85 |
+
print("generate_video_gpu (prompt: " + prompt + ")")
|
86 |
if torch.cuda.device_count() == 0:
|
87 |
+
gr.Warning("Set this space to GPU config to make it work.")
|
88 |
return None
|
89 |
|
90 |
seed = None if seed == -1 else seed
|
91 |
width, height = resolution.split("x")
|
92 |
width, height = int(width), int(height)
|
93 |
negative_prompt = "" # not applicable in the inference
|
94 |
+
print("Predicting video...")
|
95 |
|
96 |
outputs = model.predict(
|
97 |
prompt=prompt,
|
|
|
108 |
embedded_guidance_scale=embedded_guidance_scale
|
109 |
)
|
110 |
|
111 |
+
print("Video predicted")
|
112 |
+
samples = outputs["samples"]
|
113 |
sample = samples[0].unsqueeze(0)
|
114 |
|
115 |
save_path = "./gradio_outputs"
|
|
|
118 |
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%H:%M:%S")
|
119 |
video_path = f"{save_path}/{time_flag}_seed{outputs['seeds'][0]}_{outputs['prompts'][0][:100].replace('/','')}.mp4"
|
120 |
save_videos_grid(sample, video_path, fps=24)
|
121 |
+
logger.info(f"Sample saved to: {video_path}")
|
122 |
|
123 |
+
print("Return the video")
|
124 |
return video_path
|
125 |
|
126 |
def create_demo(model_path):
|