Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
import yaml
|
7 |
+
import transformers
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
app.add_middleware(
|
11 |
+
CORSMiddleware,
|
12 |
+
allow_origins=["*"], # Adjust this as needed
|
13 |
+
allow_credentials=True,
|
14 |
+
allow_methods=["*"],
|
15 |
+
allow_headers=["*"],
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load the model and tokenizer
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("EzekielMW/Eksl_dataset")
|
20 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("EzekielMW/Eksl_dataset")
|
21 |
+
|
22 |
+
# Where should output files be stored locally
|
23 |
+
drive_folder = "./serverlogs"
|
24 |
+
|
25 |
+
if not os.path.exists(drive_folder):
|
26 |
+
os.makedirs(drive_folder)
|
27 |
+
|
28 |
+
|
29 |
+
# Large batch sizes generally give good results for translation
|
30 |
+
effective_train_batch_size = 480
|
31 |
+
train_batch_size = 6
|
32 |
+
eval_batch_size = train_batch_size
|
33 |
+
|
34 |
+
gradient_accumulation_steps = int(effective_train_batch_size / train_batch_size)
|
35 |
+
|
36 |
+
# Everything in one yaml string, so that it can all be logged.
|
37 |
+
yaml_config = '''
|
38 |
+
training_args:
|
39 |
+
output_dir: "{drive_folder}"
|
40 |
+
eval_strategy: steps
|
41 |
+
eval_steps: 100
|
42 |
+
save_steps: 100
|
43 |
+
gradient_accumulation_steps: {gradient_accumulation_steps}
|
44 |
+
learning_rate: 3.0e-4 # Include decimal point to parse as float
|
45 |
+
# optim: adafactor
|
46 |
+
per_device_train_batch_size: {train_batch_size}
|
47 |
+
per_device_eval_batch_size: {eval_batch_size}
|
48 |
+
weight_decay: 0.01
|
49 |
+
save_total_limit: 3
|
50 |
+
max_steps: 500
|
51 |
+
predict_with_generate: True
|
52 |
+
fp16: True
|
53 |
+
logging_dir: "{drive_folder}"
|
54 |
+
load_best_model_at_end: True
|
55 |
+
metric_for_best_model: loss
|
56 |
+
seed: 123
|
57 |
+
push_to_hub: False
|
58 |
+
|
59 |
+
max_input_length: 128
|
60 |
+
eval_pretrained_model: False
|
61 |
+
early_stopping_patience: 4
|
62 |
+
data_dir: .
|
63 |
+
|
64 |
+
# Use a 600M parameter model here, which is easier to train on a free Colab
|
65 |
+
# instance. Bigger models work better, however: results will be improved
|
66 |
+
# if able to train on nllb-200-1.3B instead.
|
67 |
+
model_checkpoint: facebook/nllb-200-distilled-600M
|
68 |
+
|
69 |
+
datasets:
|
70 |
+
train:
|
71 |
+
huggingface_load:
|
72 |
+
# We will load two datasets here: English/KSL Gloss, and also SALT
|
73 |
+
# Swahili/English, so that we can try out multi-way translation.
|
74 |
+
|
75 |
+
- path: EzekielMW/Eksl_dataset
|
76 |
+
split: train[:-1000]
|
77 |
+
- path: sunbird/salt
|
78 |
+
name: text-all
|
79 |
+
split: train
|
80 |
+
source:
|
81 |
+
# This is a text translation only, no audio.
|
82 |
+
type: text
|
83 |
+
# The source text can be any of English, KSL or Swahili.
|
84 |
+
language: [eng,ksl,swa]
|
85 |
+
preprocessing:
|
86 |
+
# The models are case sensitive, so if the training text is all
|
87 |
+
# capitals, then it will only learn to translate capital letters and
|
88 |
+
# won't understand lower case. Make everything lower case for now.
|
89 |
+
- lower_case
|
90 |
+
# We can also augment the spelling of the input text, which makes the
|
91 |
+
# model more robust to spelling errors.
|
92 |
+
- augment_characters
|
93 |
+
target:
|
94 |
+
type: text
|
95 |
+
# The target text with any of English, KSL or Swahili.
|
96 |
+
language: [eng,ksl,swa]
|
97 |
+
# The models are case sensitive: make everything lower case for now.
|
98 |
+
preprocessing:
|
99 |
+
- lower_case
|
100 |
+
|
101 |
+
shuffle: True
|
102 |
+
allow_same_src_and_tgt_language: False
|
103 |
+
|
104 |
+
validation:
|
105 |
+
huggingface_load:
|
106 |
+
# Use the last 500 of the KSL examples for validation.
|
107 |
+
- path: EzekielMW/Eksl_dataset
|
108 |
+
split: train[-1000:]
|
109 |
+
# Add some Swahili validation text.
|
110 |
+
- path: sunbird/salt
|
111 |
+
name: text-all
|
112 |
+
split: dev
|
113 |
+
source:
|
114 |
+
type: text
|
115 |
+
language: [swa,ksl,eng]
|
116 |
+
preprocessing:
|
117 |
+
- lower_case
|
118 |
+
target:
|
119 |
+
type: text
|
120 |
+
language: [swa,ksl,eng]
|
121 |
+
preprocessing:
|
122 |
+
- lower_case
|
123 |
+
allow_same_src_and_tgt_language: False
|
124 |
+
'''
|
125 |
+
|
126 |
+
yaml_config = yaml_config.format(
|
127 |
+
drive_folder=drive_folder,
|
128 |
+
train_batch_size=train_batch_size,
|
129 |
+
eval_batch_size=eval_batch_size,
|
130 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
131 |
+
)
|
132 |
+
|
133 |
+
config = yaml.safe_load(yaml_config)
|
134 |
+
|
135 |
+
training_settings = transformers.Seq2SeqTrainingArguments(
|
136 |
+
**config["training_args"])
|
137 |
+
# The pre-trained model that we use has support for some African languages, but
|
138 |
+
# we need to adapt the tokenizer to languages that it wasn't trained with,
|
139 |
+
# such as KSL. Here we reuse the token from a different language.
|
140 |
+
LANGUAGE_CODES = ["eng", "swa", "ksl"]
|
141 |
+
|
142 |
+
code_mapping = {
|
143 |
+
# Exact/close mapping
|
144 |
+
'eng': 'eng_Latn',
|
145 |
+
'swa': 'swh_Latn',
|
146 |
+
# Random mapping
|
147 |
+
'ksl': 'ace_Latn',
|
148 |
+
}
|
149 |
+
tokenizer = transformers.NllbTokenizer.from_pretrained(
|
150 |
+
config['model_checkpoint'],
|
151 |
+
src_lang='eng_Latn',
|
152 |
+
tgt_lang='eng_Latn')
|
153 |
+
|
154 |
+
offset = tokenizer.sp_model_size + tokenizer.fairseq_offset
|
155 |
+
|
156 |
+
for code in LANGUAGE_CODES:
|
157 |
+
i = tokenizer.convert_tokens_to_ids(code_mapping[code])
|
158 |
+
tokenizer._added_tokens_encoder[code] = i
|
159 |
+
|
160 |
+
# Define a translation function
|
161 |
+
def translate(text, source_language, target_language):
|
162 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
163 |
+
inputs = tokenizer(text.lower(), return_tensors="pt").to(device)
|
164 |
+
inputs['input_ids'][0][0] = tokenizer.convert_tokens_to_ids(source_language)
|
165 |
+
translated_tokens = model.to(device).generate(
|
166 |
+
**inputs,
|
167 |
+
forced_bos_token_id=tokenizer.convert_tokens_to_ids(target_language),
|
168 |
+
max_length=100,
|
169 |
+
num_beams=5,
|
170 |
+
)
|
171 |
+
result = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
172 |
+
|
173 |
+
if target_language == 'ksl':
|
174 |
+
result = result.upper()
|
175 |
+
|
176 |
+
return result
|
177 |
+
|
178 |
+
@app.post("/translate")
|
179 |
+
async def translate_text(request: Request):
|
180 |
+
data = await request.json()
|
181 |
+
text = data.get("text")
|
182 |
+
source_language = data.get("source_language")
|
183 |
+
target_language = data.get("target_language")
|
184 |
+
|
185 |
+
translation = translate(text, source_language, target_language)
|
186 |
+
return {"translation": translation}
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|