from io import BytesIO from math import inf import os import base64 import json import gradio as gr import numpy as np from gradio import processing_utils import requests from packaging import version from PIL import Image, ImageDraw import functools import emoji from langchain_community.chat_models import ChatOpenAI from langchain.schema import HumanMessage from caption_anything.model import CaptionAnything from caption_anything.utils.image_editing_utils import create_bubble_frame from caption_anything.utils.utils import mask_painter, seg_model_map, prepare_segmenter, image_resize from caption_anything.utils.parser import parse_augment from caption_anything.captioner import build_captioner from caption_anything.text_refiner import build_text_refiner from caption_anything.segmenter import build_segmenter from chatbox import ConversationBot, build_chatbot_tools, get_new_image_name from segment_anything import sam_model_registry import easyocr import re import edge_tts from langchain import __version__ # Print the current version of LangChain print(f"Current LangChain version: {__version__}") # import tts ############################################################################### ############# this part is for 3D generate ############# ############################################################################### # import spaces # import os # import uuid # from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler # from diffusers.utils import export_to_video # from safetensors.torch import load_file #from diffusers.models.modeling_outputs import Transformer2DModelOutput import random import uuid import json from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler import imageio import numpy as np import torch import rembg from PIL import Image from torchvision.transforms import v2 from pytorch_lightning import seed_everything from omegaconf import OmegaConf from einops import rearrange, repeat from tqdm import tqdm from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler from src.utils.train_util import instantiate_from_config from src.utils.camera_util import ( FOV_to_intrinsics, get_zero123plus_input_cameras, get_circular_camera_poses, ) from src.utils.mesh_util import save_obj, save_glb from src.utils.infer_util import remove_background, resize_foreground, images_to_video import tempfile from functools import partial from huggingface_hub import hf_hub_download def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): """ Get the rendering camera parameters. """ c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) if is_flexicubes: cameras = torch.linalg.inv(c2ws) cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) else: extrinsics = c2ws.flatten(-2) intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) cameras = torch.cat([extrinsics, intrinsics], dim=-1) cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) return cameras def images_to_video(images, output_path, fps=30): # images: (N, C, H, W) os.makedirs(os.path.dirname(output_path), exist_ok=True) frames = [] for i in range(images.shape[0]): frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ f"Frame shape mismatch: {frame.shape} vs {images.shape}" assert frame.min() >= 0 and frame.max() <= 255, \ f"Frame value out of range: {frame.min()} ~ {frame.max()}" frames.append(frame) imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') ############################################################################### # Configuration. ############################################################################### import shutil def find_cuda(): # Check if CUDA_HOME or CUDA_PATH environment variables are set cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home and os.path.exists(cuda_home): return cuda_home # Search for the nvcc executable in the system's PATH nvcc_path = shutil.which('nvcc') if nvcc_path: # Remove the 'bin/nvcc' part to get the CUDA installation path cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) return cuda_path return None cuda_path = find_cuda() if cuda_path: print(f"CUDA installation found at: {cuda_path}") else: print("CUDA installation not found") config_path = 'configs/instant-nerf-base.yaml' config = OmegaConf.load(config_path) config_name = os.path.basename(config_path).replace('.yaml', '') model_config = config.model_config infer_config = config.infer_config IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False device = torch.device('cuda') # load diffusion model print('Loading diffusion model ...') pipeline = DiffusionPipeline.from_pretrained( "sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus", torch_dtype=torch.float16, ) pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( pipeline.scheduler.config, timestep_spacing='trailing' ) # load custom white-background UNet unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") state_dict = torch.load(unet_ckpt_path, map_location='cpu') pipeline.unet.load_state_dict(state_dict, strict=True) pipeline = pipeline.to(device) # load reconstruction model print('Loading reconstruction model ...') model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_nerf_base.ckpt", repo_type="model") model0 = instantiate_from_config(model_config) state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} model0.load_state_dict(state_dict, strict=True) model0 = model0.to(device) print('Loading Finished!') def check_input_image(input_image): if input_image is None: raise gr.Error("No image uploaded!") image = None else: image = Image.open(input_image) return image def preprocess(input_image, do_remove_background): rembg_session = rembg.new_session() if do_remove_background else None if do_remove_background: input_image = remove_background(input_image, rembg_session) input_image = resize_foreground(input_image, 0.85) return input_image # @spaces.GPU def generate_mvs(input_image, sample_steps, sample_seed): seed_everything(sample_seed) # sampling z123_image = pipeline( input_image, num_inference_steps=sample_steps ).images[0] show_image = np.asarray(z123_image, dtype=np.uint8) show_image = torch.from_numpy(show_image) # (960, 640, 3) show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) show_image = Image.fromarray(show_image.numpy()) return z123_image, show_image # @spaces.GPU def make3d(images): global model0 if IS_FLEXICUBES: model0.init_flexicubes_geometry(device) model0 = model0.eval() images = np.asarray(images, dtype=np.float32) / 255.0 images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) images = images.unsqueeze(0).to(device) images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name print(mesh_fpath) mesh_basename = os.path.basename(mesh_fpath).split('.')[0] mesh_dirname = os.path.dirname(mesh_fpath) video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") with torch.no_grad(): # get triplane planes = model0.forward_planes(images, input_cameras) # # get video # chunk_size = 20 if IS_FLEXICUBES else 1 # render_size = 384 # frames = [] # for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): # if IS_FLEXICUBES: # frame = model.forward_geometry( # planes, # render_cameras[:, i:i+chunk_size], # render_size=render_size, # )['img'] # else: # frame = model.synthesizer( # planes, # cameras=render_cameras[:, i:i+chunk_size], # render_size=render_size, # )['images_rgb'] # frames.append(frame) # frames = torch.cat(frames, dim=1) # images_to_video( # frames[0], # video_fpath, # fps=30, # ) # print(f"Video saved to {video_fpath}") # get mesh mesh_out = model0.extract_mesh( planes, use_texture_map=False, **infer_config, ) vertices, faces, vertex_colors = mesh_out vertices = vertices[:, [1, 2, 0]] save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) save_obj(vertices, faces, vertex_colors, mesh_fpath) print(f"Mesh saved to {mesh_fpath}") return mesh_fpath, mesh_glb_fpath ############################################################################### ############# above part is for 3D generate ############# ############################################################################### ############################################################################### ############# this part is for text to image ############# ############################################################################### # Use environment variables for flexibility MODEL_ID = os.getenv("MODEL_ID", "sd-community/sdxl-flash") MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once # Determine device and load model outside of function for efficiency device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") pipe = StableDiffusionXLPipeline.from_pretrained( MODEL_ID, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, use_safetensors=True, add_watermarker=False, ).to(device) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Torch compile for potential speedup (experimental) if USE_TORCH_COMPILE: pipe.compile() # CPU offloading for larger RAM capacity (experimental) if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() MAX_SEED = np.iinfo(np.int32).max def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed # @spaces.GPU(duration=30, queue=False) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 1, width: int = 200, height: int = 200, guidance_scale: float = 3, num_inference_steps: int = 30, randomize_seed: bool = False, num_images: int = 4, # Number of images to generate use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator(device=device).manual_seed(seed) # Improved options handling options = { "prompt": [prompt] * num_images, "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "generator": generator, "output_type": "pil", } # Use resolution binning for faster generation with less VRAM usage # if use_resolution_binning: # options["use_resolution_binning"] = True # Generate images potentially in batches images = [] for i in range(0, num_images, BATCH_SIZE): batch_options = options.copy() batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] if "negative_prompt" in batch_options: batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] images.extend(pipe(**batch_options).images) image_paths = [save_image(img) for img in images] return image_paths, seed examples = [ "a cat eating a piece of cheese", "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k", "Ironman VS Hulk, ultrarealistic", "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k", "An alien holding a sign board containing the word 'Flash', futuristic, neonpunk", "Kids going to school, Anime style" ] ############################################################################### ############# above part is for text to image ############# ############################################################################### css = """ #warning {background-color: #FFCCCB} .chatbot { padding: 0 !important; margin: 0 !important; } """ filtered_language_dict = { 'English': 'en-US-JennyNeural', 'Chinese': 'zh-CN-XiaoxiaoNeural', 'French': 'fr-FR-DeniseNeural', 'Spanish': 'es-MX-DaliaNeural', 'Arabic': 'ar-SA-ZariyahNeural', 'Portuguese': 'pt-BR-FranciscaNeural', 'Cantonese': 'zh-HK-HiuGaaiNeural' } focus_map = { "CFV-D":0, "CFV-DA":1, "CFV-DAI":2, "PFV-DDA":3 } ''' prompt_list = [ 'Wiki_caption: {Wiki_caption}, you have to generate a caption according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.', 'Wiki_caption: {Wiki_caption}, you have to select sentences from wiki caption that describe the surrounding objects that may be associated with the picture object. Around {length} words of {sentiment} sentiment in {language}.', 'Wiki_caption: {Wiki_caption}. You have to choose sentences from the wiki caption that describe unrelated objects to the image. Around {length} words of {sentiment} sentiment in {language}.', 'Wiki_caption: {Wiki_caption}. You have to choose sentences from the wiki caption that describe unrelated objects to the image. Around {length} words of {sentiment} sentiment in {language}.' ] prompt_list = [ 'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact (describes the object but does not include analysis)as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.', 'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.', 'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis and one interpret as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.', 'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and the objects that may be related to the selected object and list one fact of selected object, one fact of related object and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.' ] ''' prompt_list = [ 'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact (describes the selected object but does not include analysis)as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.', 'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.', 'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis and one interpret as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.', 'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and the objects that may be related to the selected object and list one fact of selected object, one fact of related object and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.' ] gpt_state = 0 VOICE = "en-GB-SoniaNeural" article = """
By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
Gradio demo for EyeSee Anything in Art, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. """ examples = [ ["test_images/ambass.jpg"], ["test_images/pearl.jpg"], ["test_images/Picture0.png"], ["test_images/Picture1.png"], ["test_images/Picture2.png"], ["test_images/Picture3.png"], ["test_images/Picture4.png"], ["test_images/Picture5.png"], ] with gr.Blocks( css=get_style(), theme=gr.themes.Base() ) as iface: state = gr.State([]) out_state = gr.State(None) click_state = gr.State([[], [], []]) origin_image = gr.State(None) image_embedding = gr.State(None) text_refiner = gr.State(None) visual_chatgpt = gr.State(None) original_size = gr.State(None) input_size = gr.State(None) paragraph = gr.State("") aux_state = gr.State([]) click_index_state = gr.State((0, 0)) input_mask_state = gr.State(np.zeros((1, 1))) input_points_state = gr.State([]) input_labels_state = gr.State([]) new_crop_save_path = gr.State(None) image_input_nobackground = gr.State(None) artist=gr.State(None) like_res=gr.State([]) dislike_res=gr.State([]) gr.Markdown(title) gr.Markdown(description) # with gr.Row(align="right", visible=False, elem_id="top_row") as top_row: # with gr.Column(scale=0.5): # # gr.Markdown("Left side content") # with gr.Column(scale=0.5): # with gr.Row(align="right",visible=False) as language_select: # language = gr.Dropdown( # ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], # value="English", label="Language", interactive=True) # with gr.Row(align="right",visible=False) as autoplay: # auto_play = gr.Checkbox(label="Check to autoplay audio", value=False,scale=0.4) # output_audio = gr.HTML(label="Synthesised Audio",scale=0.6) with gr.Row(visible=False, elem_id="top_row") as top_row: language = gr.Dropdown( ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], value="English", label="Language", interactive=True, elem_classes="custom-language" ) auto_play = gr.Checkbox( label="Check to autoplay audio", value=False, elem_classes="custom-autoplay" ) output_audio = gr.HTML( label="Synthesised Audio", elem_classes="custom-output" ) # with gr.Row(align="right",visible=False) as language_select: # language = gr.Dropdown( # ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], # value="English", label="Language", interactive=True) # with gr.Row(align="right",visible=False) as autoplay: # auto_play = gr.Checkbox(label="Check to autoplay audio", value=False,scale=0.4) # output_audio = gr.HTML(label="Synthesised Audio",scale=0.6) with gr.Row(): with gr.Column(): with gr.Column(visible=False) as modules_not_need_gpt: with gr.Tab("Base(GPT Power)") as base_tab: image_input_base = gr.Image(type="pil", interactive=True, elem_id="image_upload") example_image = gr.Image(type="pil", interactive=False, visible=False) with gr.Row(): name_label_base = gr.Button(value="Name: ") artist_label_base = gr.Button(value="Artist: ") year_label_base = gr.Button(value="Year: ") material_label_base = gr.Button(value="Material: ") with gr.Tab("Click") as click_tab: image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload") example_image = gr.Image(type="pil", interactive=False, visible=False) with gr.Row(): name_label = gr.Button(value="Name: ") artist_label = gr.Button(value="Artist: ") year_label = gr.Button(value="Year: ") material_label = gr.Button(value="Material: ") with gr.Row(): with gr.Row(): focus_type = gr.Radio( choices=["CFV-D", "CFV-DA", "CFV-DAI","PFV-DDA"], value="CFV-D", label="Information Type", interactive=True) with gr.Row(): submit_button_click=gr.Button(value="Submit", interactive=True,variant='primary',size="sm") with gr.Row(): with gr.Row(): point_prompt = gr.Radio( choices=["Positive", "Negative"], value="Positive", label="Point Prompt", interactive=True) click_mode = gr.Radio( choices=["Continuous", "Single"], value="Continuous", label="Clicking Mode", interactive=True) with gr.Row(): clear_button_click = gr.Button(value="Clear Clicks", interactive=True) clear_button_image = gr.Button(value="Clear Image", interactive=True) with gr.Tab("Trajectory (beta)") as traj_tab: # sketcher_input = ImageSketcher(type="pil", interactive=True, brush_radius=10, # elem_id="image_sketcher") sketcher_input = gr.ImageEditor(type="pil", interactive=True, elem_id="image_sketcher") example_image = gr.Image(type="pil", interactive=False, visible=False) with gr.Row(): submit_button_sketcher = gr.Button(value="Submit", interactive=True) clear_button_sketcher = gr.Button(value="Clear Sketch", interactive=True) with gr.Row(): with gr.Row(): focus_type_sketch = gr.Radio( choices=["CFV-D", "CFV-DA", "CFV-DAI","PFV-DDA"], value="CFV-D", label="Information Type", interactive=True) Input_sketch = gr.Radio( choices=["Trace+Seg", "Trace"], value="Trace+Seg", label="Trace Type", interactive=True) with gr.Column(visible=False) as modules_need_gpt1: with gr.Row(): sentiment = gr.Radio( choices=["Positive", "Natural", "Negative"], value="Natural", label="Sentiment", interactive=True, ) with gr.Row(): factuality = gr.Radio( choices=["Factual", "Imagination"], value="Factual", label="Factuality", interactive=True, ) length = gr.Slider( minimum=10, maximum=80, value=10, step=1, interactive=True, label="Generated Caption Length", ) # 是否启用wiki内容整合到caption中 enable_wiki = gr.Radio( choices=["Yes", "No"], value="No", label="Expert", interactive=True) with gr.Column(visible=True) as modules_not_need_gpt3: gr.Examples( examples=examples, inputs=[example_image], ) with gr.Column(): with gr.Column(visible=True) as module_key_input: openai_api_key = gr.Textbox( placeholder="Input openAI API key", show_label=False, label="OpenAI API Key", lines=1, type="password") with gr.Row(): enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary') disable_chatGPT_button = gr.Button(value="Run without ChatGPT (Faster)", interactive=True, variant='primary') with gr.Column(visible=False) as module_notification_box: notification_box = gr.Textbox(lines=1, label="Notification", max_lines=5, show_label=False) with gr.Column() as modules_need_gpt0: with gr.Column(visible=False) as modules_need_gpt2: paragraph_output = gr.Textbox(lines=16, label="Describe Everything", max_lines=16) cap_everything_button = gr.Button(value="Caption Everything in a Paragraph", interactive=True) with gr.Column(visible=False) as modules_not_need_gpt2: with gr.Blocks(): chatbot = gr.Chatbot(label="Chatbox", elem_classes="chatbot",likeable=True,height=600) with gr.Column(visible=False) as modules_need_gpt3: chat_input = gr.Textbox(show_label=False, placeholder="Enter text and press Enter",container=False) with gr.Row(): clear_button_text = gr.Button(value="Clear Text", interactive=True) submit_button_text = gr.Button(value="Send", interactive=True, variant="primary") # upvote_btn = gr.Button(value="👍 Upvote", interactive=True) # downvote_btn = gr.Button(value="👎 Downvote", interactive=True) with gr.Row(): export_button = gr.Button(value="Export Chat Log", interactive=True, variant="primary") with gr.Row(): chat_log_file = gr.File(label="Download Chat Log") # TTS interface hidden initially with gr.Column(visible=False) as tts_interface: input_text = gr.Textbox(label="Text Prompt", value="Hello, World !, here is an example of light voice cloning. Try to upload your best audio samples quality") input_language = gr.Dropdown(label="Language", choices=["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn"], value="en") input_audio = gr.Audio(label="Reference Audio", type="filepath", value="examples/female.wav") input_mic = gr.Audio(sources="microphone", type="filepath", label="Use Microphone for Reference") use_mic = gr.Checkbox(label="Check to use Microphone as Reference", value=False) agree = gr.Checkbox(label="Agree", value=True) output_waveform = gr.Video(label="Waveform Visual") # output_audio = gr.HTML(label="Synthesised Audio") with gr.Row(): submit_tts = gr.Button(value="Submit", interactive=True) clear_tts = gr.Button(value="Clear", interactive=True) ############################################################################### ############# this part is for text to image ############# ############################################################################### with gr.Row(variant="panel") as text2image_model: with gr.Column(): with gr.Column(): gr.Radio([artist], label="Artist", info="Who is the artist?🧑🎨"), gr.Radio(["Oil Painting","Printmaking","Watercolor Painting","Drawing"], label="Art Forms", info="What are the art forms?🎨"), gr.Radio(["Renaissance", "Baroque", "Impressionism","Modernism"], label="Period", info="Which art period?⏳"), # to be done gr.Dropdown( ["ran", "swam", "ate", "slept"], value=["swam", "slept"], multiselect=True, label="Items", info="Which items are you interested in?" ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run") with gr.Accordion("Advanced options", open=False): num_images = gr.Slider( label="Number of Images", minimum=1, maximum=4, step=1, value=4, ) with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=5, lines=4, placeholder="Enter a negative prompt", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=100, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) height = gr.Slider( label="Height", minimum=100, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=6, step=0.1, value=3.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=15, step=1, value=8, ) with gr.Column(): result = gr.Gallery( label="Result", height="auto", columns=4 # columns=4, # rows=2, # show_label=False, # allow_preview=True, # object_fit="contain", # height="auto", # preview=True, # show_share_button=True, # show_download_button=True ) # gr.Examples( # examples=examples, # inputs=prompt, # cache_examples=False # ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) # gr.on( # triggers=[ # prompt.submit, # negative_prompt.submit, # run_button.click, # ], # fn=generate, # inputs=[ # prompt, # negative_prompt, # use_negative_prompt, # seed, # width, # height, # guidance_scale, # num_inference_steps, # randomize_seed, # num_images # ], # outputs=[result, seed], # api_name="run", # ) run_button.click( fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed, num_images ], outputs=[result, seed] ) ############################################################################### ############# above part is for text to image ############# ############################################################################### ############################################################################### # this part is for 3d generate. ############################################################################### with gr.Row(variant="panel",visible=False) as d3_model: with gr.Column(): with gr.Row(): input_image = gr.Image( label="Input Image", image_mode="RGBA", sources="upload", #width=256, #height=256, type="pil", elem_id="content_image", ) processed_image = gr.Image( label="Processed Image", image_mode="RGBA", #width=256, #height=256, type="pil", interactive=False ) with gr.Row(): with gr.Group(): do_remove_background = gr.Checkbox( label="Remove Background", value=True ) sample_seed = gr.Number(value=42, label="Seed Value", precision=0) sample_steps = gr.Slider( label="Sample Steps", minimum=30, maximum=75, value=75, step=5 ) with gr.Row(): submit = gr.Button("Generate", elem_id="generate", variant="primary") with gr.Row(variant="panel"): gr.Examples( examples=[ os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) ], inputs=[input_image], label="Examples", cache_examples=False, examples_per_page=16 ) with gr.Column(): with gr.Row(): with gr.Column(): mv_show_images = gr.Image( label="Generated Multi-views", type="pil", width=379, interactive=False ) # with gr.Column(): # output_video = gr.Video( # label="video", format="mp4", # width=379, # autoplay=True, # interactive=False # ) with gr.Row(): with gr.Tab("OBJ"): output_model_obj = gr.Model3D( label="Output Model (OBJ Format)", interactive=False, ) gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.") with gr.Tab("GLB"): output_model_glb = gr.Model3D( label="Output Model (GLB Format)", interactive=False, ) gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.") mv_images = gr.State() chatbot.like(print_like_dislike, inputs=[like_res,dislike_res,state], outputs=[like_res,dislike_res,chatbot]) submit.click(fn=check_input_image, inputs=[new_crop_save_path], outputs=[processed_image]).success( fn=generate_mvs, inputs=[processed_image, sample_steps, sample_seed], outputs=[mv_images, mv_show_images] ).success( fn=make3d, inputs=[mv_images], outputs=[output_model_obj, output_model_glb] ) ############################################################################### # above part is for 3d generate. ############################################################################### def clear_tts_fields(): return [gr.update(value=""), gr.update(value=""), None, None, gr.update(value=False), gr.update(value=True), None, None] # submit_tts.click( # tts.predict, # inputs=[input_text, input_language, input_audio, input_mic, use_mic, agree], # outputs=[output_waveform, output_audio], # queue=True # ) clear_tts.click( clear_tts_fields, inputs=None, outputs=[input_text, input_language, input_audio, input_mic, use_mic, agree, output_waveform, output_audio], queue=False ) clear_button_sketcher.click( lambda x: (x), [origin_image], [sketcher_input], queue=False, show_progress=False ) openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, tts_interface,module_key_input ,module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row]) enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, tts_interface,module_key_input,module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row]) # openai_api_key.submit(init_openai_api_key, # outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, # modules_not_need_gpt2, tts_interface,module_key_input ,module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row]) # enable_chatGPT_button.click(init_openai_api_key, # outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3, # modules_not_need_gpt, # modules_not_need_gpt2, tts_interface,module_key_input,module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row]) disable_chatGPT_button.click(init_wo_openai_api_key, outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, tts_interface,module_key_input, module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row]) enable_chatGPT_button.click( lambda: (None, [], [], [[], [], []], "", "", ""), [], [image_input, chatbot, state, click_state, paragraph_output, origin_image], queue=False, show_progress=False ) openai_api_key.submit( lambda: (None, [], [], [[], [], []], "", "", ""), [], [image_input, chatbot, state, click_state, paragraph_output, origin_image], queue=False, show_progress=False ) cap_everything_button.click(cap_everything, [paragraph, visual_chatgpt, language,auto_play], [paragraph_output,output_audio]) clear_button_click.click( lambda x: ([[], [], []], x), [origin_image], [click_state, image_input], queue=False, show_progress=False ) clear_button_click.click(functools.partial(clear_chat_memory, keep_global=True), inputs=[visual_chatgpt]) clear_button_image.click( lambda: (None, [], [], [[], [], []], "", "", ""), [], [image_input, chatbot, state, click_state, paragraph_output, origin_image], queue=False, show_progress=False ) clear_button_image.click(clear_chat_memory, inputs=[visual_chatgpt]) clear_button_text.click( lambda: ([], [], [[], [], [], []]), [], [chatbot, state, click_state], queue=False, show_progress=False ) clear_button_text.click(clear_chat_memory, inputs=[visual_chatgpt]) image_input.clear( lambda: (None, [], [], [[], [], []], "", "", ""), [], [image_input, chatbot, state, click_state, paragraph_output, origin_image], queue=False, show_progress=False ) image_input.clear(clear_chat_memory, inputs=[visual_chatgpt]) image_input_base.upload(upload_callback, [image_input_base, state, visual_chatgpt,openai_api_key], [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input, image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist]) image_input.upload(upload_callback, [image_input, state, visual_chatgpt, openai_api_key], [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input, image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist]) sketcher_input.upload(upload_callback, [sketcher_input, state, visual_chatgpt, openai_api_key], [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input, image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist]) chat_input.submit(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state,language,auto_play], [chatbot, state, aux_state,output_audio]) chat_input.submit(lambda: "", None, chat_input) submit_button_text.click(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state,language,auto_play], [chatbot, state, aux_state,output_audio]) submit_button_text.click(lambda: "", None, chat_input) example_image.change(upload_callback, [example_image, state, visual_chatgpt, openai_api_key], [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input, image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist]) example_image.change(clear_chat_memory, inputs=[visual_chatgpt]) def on_click_tab_selected(): if gpt_state ==1: print(gpt_state) print("using gpt") return [gr.update(visible=True)]*2+[gr.update(visible=False)]*2 else: print("no gpt") print("gpt_state",gpt_state) return [gr.update(visible=False)]+[gr.update(visible=True)]+[gr.update(visible=False)]*2 def on_base_selected(): if gpt_state ==1: print(gpt_state) print("using gpt") return [gr.update(visible=True)]*2+[gr.update(visible=False)]*2 else: print("no gpt") return [gr.update(visible=False)]*4 traj_tab.select(on_click_tab_selected, outputs=[modules_need_gpt1,modules_not_need_gpt2,modules_need_gpt0,modules_need_gpt2]) click_tab.select(on_click_tab_selected, outputs=[modules_need_gpt1,modules_not_need_gpt2,modules_need_gpt0,modules_need_gpt2]) base_tab.select(on_base_selected, outputs=[modules_need_gpt0,modules_need_gpt2,modules_not_need_gpt2,modules_need_gpt1]) image_input.select( inference_click, inputs=[ origin_image, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length, image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt, out_state, click_index_state, input_mask_state, input_points_state, input_labels_state, ], outputs=[chatbot, state, click_state, image_input, input_image, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,new_crop_save_path,image_input_nobackground], show_progress=False, queue=True ) submit_button_click.click( submit_caption, inputs=[ state, text_refiner,length, sentiment, factuality, language, out_state, click_index_state, input_mask_state, input_points_state, input_labels_state, auto_play,paragraph,focus_type,openai_api_key,new_crop_save_path ], outputs=[ chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, output_audio ], show_progress=True, queue=True ) submit_button_sketcher.click( inference_traject, inputs=[ origin_image,sketcher_input, enable_wiki, language, sentiment, factuality, length, image_embedding, state, original_size, input_size, text_refiner,focus_type_sketch,paragraph,openai_api_key,auto_play,Input_sketch ], outputs=[chatbot, state, sketcher_input,output_audio], show_progress=False, queue=True ) export_button.click( export_chat_log, inputs=[state,paragraph,like_res,dislike_res], outputs=[chat_log_file], queue=True ) # upvote_btn.click( # handle_liked, # inputs=[state,like_res], # outputs=[chatbot,like_res] # ) # downvote_btn.click( # handle_disliked, # inputs=[state,dislike_res], # outputs=[chatbot,dislike_res] # ) return iface if __name__ == '__main__': iface = create_ui() iface.queue(api_open=False, max_size=10) # iface.queue(concurrency_count=5, api_open=False, max_size=10) iface.launch(server_name="0.0.0.0")