File size: 3,892 Bytes
590bb1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import json
import numpy as np
import webdataset as wds
import pytorch_lightning as pl
import torch
from torch.utils.data import Dataset
from torch.utils.data.distributed import DistributedSampler
from PIL import Image
from pathlib import Path

from src.utils.train_util import instantiate_from_config


class DataModuleFromConfig(pl.LightningDataModule):
    def __init__(
        self, 
        batch_size=8, 
        num_workers=4, 
        train=None, 
        validation=None, 
        test=None, 
        **kwargs,
    ):
        super().__init__()

        self.batch_size = batch_size
        self.num_workers = num_workers

        self.dataset_configs = dict()
        if train is not None:
            self.dataset_configs['train'] = train
        if validation is not None:
            self.dataset_configs['validation'] = validation
        if test is not None:
            self.dataset_configs['test'] = test
    
    def setup(self, stage):

        if stage in ['fit']:
            self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs)
        else:
            raise NotImplementedError

    def train_dataloader(self):

        sampler = DistributedSampler(self.datasets['train'])
        return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)

    def val_dataloader(self):

        sampler = DistributedSampler(self.datasets['validation'])
        return wds.WebLoader(self.datasets['validation'], batch_size=4, num_workers=self.num_workers, shuffle=False, sampler=sampler)

    def test_dataloader(self):

        return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)


class ObjaverseData(Dataset):
    def __init__(self,
        root_dir='objaverse/',
        meta_fname='valid_paths.json',
        image_dir='rendering_zero123plus',
        validation=False,
    ):
        self.root_dir = Path(root_dir)
        self.image_dir = image_dir

        with open(os.path.join(root_dir, meta_fname)) as f:
            lvis_dict = json.load(f)
        paths = []
        for k in lvis_dict.keys():
            paths.extend(lvis_dict[k])
        self.paths = paths
            
        total_objects = len(self.paths)
        if validation:
            self.paths = self.paths[-16:] # used last 16 as validation
        else:
            self.paths = self.paths[:-16]
        print('============= length of dataset %d =============' % len(self.paths))

    def __len__(self):
        return len(self.paths)

    def load_im(self, path, color):
        pil_img = Image.open(path)

        image = np.asarray(pil_img, dtype=np.float32) / 255.
        alpha = image[:, :, 3:]
        image = image[:, :, :3] * alpha + color * (1 - alpha)

        image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
        alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
        return image, alpha
    
    def __getitem__(self, index):
        while True:
            image_path = os.path.join(self.root_dir, self.image_dir, self.paths[index])

            '''background color, default: white'''
            bkg_color = [1., 1., 1.]

            img_list = []
            try:
                for idx in range(7):
                    img, alpha = self.load_im(os.path.join(image_path, '%03d.png' % idx), bkg_color)
                    img_list.append(img)

            except Exception as e:
                print(e)
                index = np.random.randint(0, len(self.paths))
                continue

            break
        
        imgs = torch.stack(img_list, dim=0).float()

        data = {
            'cond_imgs': imgs[0],           # (3, H, W)
            'target_imgs': imgs[1:],        # (6, 3, H, W)
        }
        return data