Spaces:
Running
Running
File size: 49,401 Bytes
9ef960d 2dc11df e3ed104 2dc11df ee87a3a 2dc11df ee87a3a 2dc11df 54ec520 2dc11df bc11d2a 1e9e77f 46d8462 2dc11df d1292a4 8068524 e3ed104 2dc11df 54ec520 46d8462 2dc11df 54ec520 2dc11df ee87a3a 2dc11df 8708def c343f53 c5a524a c343f53 c5a524a 2dc11df 8708def 2dc11df bc11d2a 8708def bc11d2a 8708def 2dc11df 8708def 2dc11df 46d8462 2dc11df 8708def 2dc11df 619b05e f18fd81 2dc11df 8708def 2dc11df 8708def f18fd81 9ef960d 2dc11df 46d8462 b6190c4 235ef66 c0991ab 235ef66 c0991ab 235ef66 c0991ab 60cb9b0 9ef960d 46d8462 2dc11df 46d8462 8708def e3ed104 2dc11df 46d8462 235ef66 46d8462 235ef66 06cd0b8 c343f53 abb5985 c343f53 abb5985 c343f53 abb5985 06cd0b8 c343f53 abb5985 c343f53 abb5985 c343f53 abb5985 9ef960d abb5985 9ef960d abb5985 9ef960d abb5985 06cd0b8 9ef960d 2dc11df 54ec520 2dc11df 46d8462 5e61373 2dc11df 06cd0b8 5e61373 9ef960d 5e61373 9ef960d 2dc11df 46d8462 2dc11df 235ef66 2dc11df 06cd0b8 2dc11df 9ef960d 8708def 46d8462 2dc11df 06cd0b8 235ef66 9ef960d 2dc11df 9ef960d 2dc11df 8068524 2dc11df 235ef66 2dc11df 9ef960d 2dc11df 1ff4f32 54ec520 2dc11df b6190c4 9ef960d b6190c4 9ef960d 2dc11df 9ef960d 2dc11df 9ef960d 2dc11df b6190c4 9ef960d b6190c4 2dc11df ecd56c8 2dc11df 9ef960d 2dc11df 9ef960d 2dc11df 9ef960d 2dc11df 9ef960d 2dc11df 9ef960d 2dc11df 9ef960d 2dc11df 9ef960d 2dc11df 9ef960d 06cd0b8 2dc11df 9ef960d 2dc11df b96896b 54ec520 8068524 54ec520 2dc11df 54ec520 2dc11df 54ec520 2dc11df 54ec520 2dc11df 54ec520 9ef960d 54ec520 2dc11df 54ec520 235ef66 54ec520 bcbe402 235ef66 c0be077 f08a398 9ef960d 235ef66 9ef960d 235ef66 9ef960d 235ef66 9ef960d 235ef66 9ef960d 235ef66 9ef960d 235ef66 9ef960d 06cd0b8 235ef66 f08a398 06cd0b8 9ef960d 8068524 9ef960d 8068524 9ef960d 8068524 9ef960d b6190c4 9ef960d 235ef66 9ef960d c343f53 9ef960d b6190c4 8708def 06cd0b8 8708def 06cd0b8 b6190c4 c343f53 b6190c4 2dc11df 54ec520 2dc11df 8708def 54f74e6 2dc11df 54ec520 2dc11df b6190c4 2dc11df 9ef960d ee87a3a 54ec520 9ef960d 235ef66 2dc11df ee87a3a 2dc11df 6b3e32a b6190c4 06cd0b8 4da0523 9ef960d 54ec520 235ef66 abb5985 235ef66 e3ed104 2dc11df e3563ec dd9e437 e3563ec 29ba522 2dc11df 235ef66 e3ed104 235ef66 54ec520 235ef66 b6190c4 e3ed104 b6190c4 2dc11df b6190c4 2dc11df 54ec520 2dc11df 8803616 9ef960d b6190c4 2dc11df 54ec520 2dc11df 8ed8e45 2dc11df 54ec520 2dc11df 54ec520 235ef66 2dc11df 9ef960d 235ef66 54ec520 abb5985 235ef66 54ec520 d83f6f0 235ef66 d83f6f0 235ef66 7dc7f05 9ef960d abb5985 9ef960d 235ef66 abb5985 235ef66 abb5985 235ef66 abb5985 54ec520 9ef960d b6190c4 9ef960d c0be077 9ef960d c8da149 433556e c8da149 2dc11df b6190c4 54ec520 acb115a 235ef66 2dc11df 06cd0b8 54ec520 235ef66 bcbe402 235ef66 54ec520 235ef66 54ec520 235ef66 2dc11df 9ef960d 54ec520 9ef960d 2dc11df 54ec520 e559b1c 9ef960d 46d8462 e559b1c 9ef960d 2dc11df 46d8462 9ef960d b96896b 9ef960d b96896b 54ec520 b96896b 9ef960d b96896b 54ec520 235ef66 2dc11df 235ef66 2dc11df 235ef66 2dc11df 46d8462 54ec520 2dc11df 9ef960d 2dc11df 9ef960d 2dc11df 46d8462 2dc11df 9ef960d 2dc11df 9ef960d 2dc11df 46d8462 54ec520 3564d1b 46d8462 54ec520 3564d1b 235ef66 46d8462 9ef960d 54ec520 8708def 235ef66 46d8462 54ec520 235ef66 2dc11df 235ef66 f08a398 235ef66 a7aba73 9ef960d 2dc11df 46d8462 9ef960d 2dc11df 5e61373 2dc11df b6190c4 2dc11df 06cd0b8 9ef960d 2dc11df 9ef960d 2dc11df b6190c4 2dc11df b6190c4 06cd0b8 9ef960d b6190c4 9ef960d b6190c4 06cd0b8 b6190c4 9ef960d b6190c4 9ef960d b6190c4 2dc11df b6190c4 06cd0b8 b6190c4 9ef960d b6190c4 9ef960d b6190c4 2dc11df 9ef960d 06cd0b8 2dc11df 06cd0b8 9ef960d 235ef66 a7aba73 06cd0b8 235ef66 c0be077 235ef66 06cd0b8 c0be077 235ef66 9ef960d 235ef66 9ef960d 2dc11df 8708def 2dc11df 54ec520 dad78df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 |
import datetime
from io import BytesIO
import io
from math import inf
import os
import base64
import json
import gradio as gr
import numpy as np
from PIL import Image
import emoji
from langchain_community.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
from caption_anything.model import CaptionAnything
from caption_anything.utils.utils import mask_painter, seg_model_map, prepare_segmenter, image_resize
from caption_anything.utils.parser import parse_augment
from caption_anything.captioner import build_captioner
from caption_anything.segmenter import build_segmenter
from backend.chatbox import build_chatbot_tools, get_new_image_name
from segment_anything import sam_model_registry
import easyocr
import re
from langchain import __version__
import pandas as pd
import os
import json
import numpy as np
from PIL import Image
from backend.prompts import generate_prompt
from backend.recommendation import RecommendationConfig, ImageRecommender
from backend.gpt_service import get_gpt_response, get_artistinfo, get_yearinfo
from backend.texttospeech.tts import texttospeech
from backend.prompts.prompt_templates import PromptTemplates
recommendation_config = RecommendationConfig()
recommender = ImageRecommender(recommendation_config)
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
args = parse_augment()
args.segmenter = "huge"
args.segmenter_checkpoint = "sam_vit_h_4b8939.pth"
args.clip_filter = True
try:
print("Before preparing segmenter")
if args.segmenter_checkpoint is None:
_, segmenter_checkpoint = prepare_segmenter(args.segmenter)
else:
segmenter_checkpoint = args.segmenter_checkpoint
print("After preparing segmenter")
except Exception as e:
print(f"Error in preparing segmenter: {e}")
try:
print("Before building captioner")
shared_captioner = build_captioner(args.captioner, args.device, args)
print("After building captioner")
except Exception as e:
print(f"Error in building captioner: {e}")
try:
print("Before loading SAM model")
shared_sam_model = sam_model_registry[seg_model_map[args.segmenter]](checkpoint=segmenter_checkpoint).to(args.device)
print("After loading SAM model")
except Exception as e:
print(f"Error in loading SAM model: {e}")
try:
print("Before initializing OCR reader")
ocr_lang = ["ch_tra", "en"]
shared_ocr_reader = easyocr.Reader(ocr_lang,model_storage_directory=".EasyOCR/model")
print("After initializing OCR reader")
except Exception as e:
print(f"Error in initializing OCR reader: {e}")
try:
print("Before building chatbot tools")
tools_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.chat_tools_dict.split(',')}
shared_chatbot_tools = build_chatbot_tools(tools_dict)
print("After building chatbot tools")
except Exception as e:
print(f"Error in building chatbot tools: {e}")
query_focus_en = [
"Provide a description of the item.",
"Provide a description and analysis of the item.",
"Provide a description, analysis, and interpretation of the item.",
"Evaluate the item."
]
query_focus_zh = [
"请描述一下这个物体。",
"请描述和分析一下这个物体。",
"请描述、分析和解释一下这个物体。",
"请以艺术鉴赏的角度评价一下这个物体。"
]
def build_caption_anything_with_models(args, api_key="", captioner=None, sam_model=None, ocr_reader=None, text_refiner=None,
session_id=None):
segmenter = build_segmenter(args.segmenter, args.device, args, model=sam_model)
captioner = captioner
if session_id is not None:
print('Init caption anything for session {}'.format(session_id))
return CaptionAnything(args, api_key, captioner=captioner, segmenter=segmenter, ocr_reader=ocr_reader, text_refiner=text_refiner)
def validate_api_key(api_key):
api_key = str(api_key).strip()
print(api_key)
try:
test_llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=api_key)
print("test_llm")
response = test_llm([HumanMessage(content='Hello')])
print(response)
return True
except Exception as e:
print(f"API key validation failed: {e}")
return False
async def init_openai_api_key(api_key=""):
if api_key and len(api_key) > 30:
print(api_key)
if validate_api_key(api_key):
try:
# text_refiner = build_text_refiner(args.text_refiner, args.device, args, api_key)
text_refiner = None
print("text refiner")
except Exception as e:
print(f"Error initializing TextRefiner or ConversationBot: {e}")
text_refiner = None
return [gr.update(visible=True)]+[gr.update(visible=False)]+[gr.update(visible=True)]* 3 + [gr.update(visible=False)]*2 + [text_refiner, None]+[gr.update(visible=True)]*4+[gr.update(visible=False)]+[gr.update(visible=True)]*2
else:
print("Invalid API key.")
else:
print("API key is too short.")
return [gr.update(visible=False)]*5 + [gr.update(visible=True)]*2 + [text_refiner, 'Your OpenAI API Key is not available']+[gr.update(visible=False)]*7
def get_click_prompt(chat_input, click_state, click_mode):
inputs = json.loads(chat_input)
if click_mode == 'Continuous':
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
elif click_mode == 'Single':
points = []
labels = []
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
else:
raise NotImplementedError
prompt = {
"prompt_type": ["click"],
"input_point": click_state[0],
"input_label": click_state[1],
"multimask_output": "True",
}
return prompt
def update_click_state(click_state, caption, click_mode):
if click_mode == 'Continuous':
click_state[2].append(caption)
elif click_mode == 'Single':
click_state[2] = [caption]
else:
raise NotImplementedError
async def chat_input_callback(*args):
chat_input, state, aux_state ,language , autoplay,gender,api_key,image_input,log_state,history,persona = args
message = chat_input["text"]
if persona == "Narrator":
prompt="Please help me answer the question with this painting {question} in {language}, with a response length of about 70 words.."
elif persona =="Artist":
prompt="When generating the answer, you should tell others that you are one of the creators of these paintings and generate the text in the tone and manner as if you are the creator of the painting. Please help me answer the question with this painting {question} in {language}, with a response length of about 70 words."
else:
prompt="When generating answers, you should tell people that you are the object itself that was selected, and generate text in the tone and manner in which you are the object or the person. Please help me answer the question with this painting {question} in {language}, with a response length of about 70 words."
prompt=prompt.format(question=message, language=language)
result=get_gpt_response(api_key, image_input,prompt+message,history)
read_info = re.sub(r'[#[\]!*]','',result)
read_info = emoji.replace_emoji(read_info,replace="")
state = state + [(message,result)]
log_state += [(message,"/////")]
log_state += [("/////",result)]
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": result})
if autoplay==False:
return state, state, aux_state, None,log_state,history
else:
audio = await texttospeech(read_info,language,gender)
return state, state, aux_state, audio,log_state,history
async def upload_callback(image_input,state, log_state, task_type, openai_api_key=None,language="English",narritive=None,history=None,autoplay=True,session="Session 1"):
print("narritive", narritive)
if isinstance(image_input, dict): # if upload from sketcher_input, input contains image and mask
image_input = image_input['background']
if isinstance(image_input, str):
image_input = Image.open(io.BytesIO(base64.b64decode(image_input)))
elif isinstance(image_input, bytes):
image_input = Image.open(io.BytesIO(image_input))
click_state = [[], [], []]
image_input = image_resize(image_input, res=1024)
model = build_caption_anything_with_models(
args,
api_key="",
captioner=shared_captioner,
sam_model=shared_sam_model,
ocr_reader=shared_ocr_reader,
session_id=iface.app_id
)
model.segmenter.set_image(image_input)
image_embedding = model.image_embedding
original_size = model.original_size
input_size = model.input_size
print('upload_callback: add caption to chatGPT memory')
new_image_path = get_new_image_name('chat_image', func_name='upload')
image_input.save(new_image_path)
paragraph = get_gpt_response(openai_api_key, new_image_path,f"What's going on in this picture? in {language}")
if task_type=="task 3":
name="Along the River During the Qingming Festival"
artist="Zhang Zeduan"
year="12th century (Song Dynasty)"
material="Chinese painting"
gender="male"
elif task_type=="task 1":
name ="The Ambassadors"
artist ="Hans Holbein the Younger"
year = "1533 (Northern Renaissance)"
material="Realism"
gender = "male"
elif task_type=="task 2":
name = "The Football Players"
artist= "Albert Gleizes"
year= "1912 (Cubism)"
material="Cubism"
gender= "male"
else:
parsed_data = get_gpt_response(openai_api_key, new_image_path,"Please provide the name, artist, year of creation (including the art historical period), and painting style used for this painting. Return the information in dictionary format without any newline characters. Format as follows: { \"name\": \"Name of the painting\", \"artist\": \"Name of the artist\", \"year\": \"Year of creation (Art historical period)\", \"style\": \"Painting style used in the painting\"}")
print(parsed_data)
parsed_data = json.loads(parsed_data.replace("'", "\""))
name, artist, year, material= parsed_data["name"],parsed_data["artist"],parsed_data["year"], parsed_data["style"]
gender="male"
gender=gender.lower()
if language=="English":
if PromptTemplates.NARRATIVE_MAPPING[narritive]==0 :
msg=f"🤖 Hi, I am EyeSee. Let's explore this painting '{name}' together. You can click on the area you're interested in and choose from four types of information: Description, Analysis, Interpretation, and Judgment. Based on your selection, I will provide you with the relevant information."
elif PromptTemplates.NARRATIVE_MAPPING[narritive]==1:
msg=f"🧑🎨 Hello, I am the {artist}. Welcome to explore my painting, '{name}'. You can click on the area you're interested in and choose from four types of information: Description, Analysis, Interpretation, and Judgment. Based on your selection, I will provide you with the relevant insights and thoughts behind my creation."
elif PromptTemplates.NARRATIVE_MAPPING[narritive]==2:
msg=f"🎨 Hello, Let's explore this painting '{name}' together. You can click on the area you're interested in and choose from four types of information: Description, Analysis, Interpretation, and Judgment. Based on your selection, I will provide you with relevant insights and thoughts from the perspective of the objects within the painting"
elif language=="Chinese":
if PromptTemplates.NARRATIVE_MAPPING[narritive]==0:
msg=f"🤖 你好,我是 EyeSee。让我们一起探索这幅画《{name}》。你可以点击你感兴趣的区域,并选择四种信息类型之一:描述、分析、解读和评判。根据你的选择,我会为你提供相关的信息。"
elif PromptTemplates.NARRATIVE_MAPPING[narritive]==1:
msg=f"🧑🎨 你好,我是{artist}。欢迎探索我的画作《{name}》。你可以点击你感兴趣的区域,并选择四种信息类型之一:描述、分析、解读和评判。根据你的选择,我会为你提供我的创作背后的相关见解和想法。"
elif PromptTemplates.NARRATIVE_MAPPING[narritive]==2:
msg=f"🎨 你好,让我们一起探索这幅画《{name}》。你可以点击你感兴趣的区域,并选择四种信息类型之一:描述、分析、解读和评判。根据你的选择,我会从画面上事物的视角为你提供相关的见解和想法。"
state = [(msg,None)]
log_state += [(name,None)]
log_state=log_state+[(paragraph,None)]
log_state=log_state+[(narritive,None)]
log_state=log_state+state
log_state = log_state + [("%% basic information %%", None)]
read_info=emoji.replace_emoji(msg,replace="")
history=[]
history.append({"role": "assistant", "content": paragraph+msg})
audio_output = None
if autoplay:
audio_output = await texttospeech(read_info, language,gender)
return [state, state, image_input, click_state]+[image_input]*1 + [image_embedding, \
original_size, input_size] + [f"Name: {name}", f"Artist: {artist}", f"Year: {year}", f"Style: {material}"]*1 + [paragraph,artist, gender,new_image_path,log_state,history,audio_output]
def inference_click(image_input, point_prompt, click_mode, enable_wiki, language, sentiment, factuality,
length, image_embedding, state, click_state, original_size, input_size, text_refiner,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state, evt: gr.SelectData):
click_index = evt.index
if point_prompt == 'Positive':
coordinate = "[[{}, {}, 1]]".format(str(click_index[0]), str(click_index[1]))
else:
coordinate = "[[{}, {}, 0]]".format(str(click_index[0]), str(click_index[1]))
prompt = get_click_prompt(coordinate, click_state, click_mode)
input_points = prompt['input_point']
input_labels = prompt['input_label']
controls = {'length': length,
'sentiment': sentiment,
'factuality': factuality,
'language': language}
model = build_caption_anything_with_models(
args,
api_key="",
captioner=shared_captioner,
sam_model=shared_sam_model,
ocr_reader=shared_ocr_reader,
text_refiner=text_refiner,
session_id=iface.app_id
)
model.setup(image_embedding, original_size, input_size, is_image_set=True)
enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki, verbose=True, args={'clip_filter': False})[0]
# state = state + [("You've selected image point at {}, ".format(prompt["input_point"]), None)]
if language=="English":
if prompt["input_label"][-1]==1:
msg="You've added an area at {}. ".format(prompt["input_point"][-1])
else:
msg="You've removed an area at {}. ".format(prompt["input_point"][-1])
else:
if prompt["input_label"][-1]==1:
msg="你添加了在 {} 的区域。 ".format(prompt["input_point"][-1])
else:
msg="你删除了在 {} 的区域。 ".format(prompt["input_point"][-1])
state = state + [(msg, None)]
input_mask = np.array(out['mask'].convert('P'))
image_input_nobackground = mask_painter(np.array(image_input), input_mask,background_alpha=0)
click_index_state = click_index
input_mask_state = input_mask
input_points_state = input_points
input_labels_state = input_labels
out_state = out
new_crop_save_path = get_new_image_name('chat_image', func_name='crop')
Image.open(out["crop_save_path"]).save(new_crop_save_path)
print("new crop save",new_crop_save_path)
return state, state, click_state, image_input_nobackground, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,new_crop_save_path,image_input_nobackground
async def submit_caption(naritive, state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
autoplay,paragraph,focus_type,openai_api_key,new_crop_save_path, gender,log_state,history):
focus_value = PromptTemplates.FOCUS_MAP[focus_type]
click_index = click_index_state
print("click_index",click_index)
print("input_points_state",input_points_state)
print("input_labels_state",input_labels_state)
prompt=generate_prompt(focus_type,paragraph,length,sentiment,factuality,language, naritive)
print("log state",log_state[-1])
if log_state[-1][0] is None or not log_state[-1][0].startswith("%%"):
log_state = log_state + [("No like/dislike", None)]
log_state = log_state + [("%% user interaction %%",None)]
log_state = log_state + [("Selected image point: {}, Input label: {}".format(input_points_state, input_labels_state), None)]
print("Prompt:", prompt)
print("click",click_index)
log_state = log_state + [(naritive, None)]
if not args.disable_gpt:
print("new crop save",new_crop_save_path)
focus_info=get_gpt_response(openai_api_key,new_crop_save_path,prompt)
if focus_info.startswith('"') and focus_info.endswith('"'):
focus_info=focus_info[1:-1]
focus_info=focus_info.replace('#', '')
# state = state + [(None, f"Wiki: {paragraph}")]
if language=="English":
user_query=query_focus_en[focus_value]
else:
user_query=query_focus_zh[focus_value]
state = state + [(user_query, f"{focus_info}")]
log_state = log_state + [(user_query, None)]
log_state = log_state + [(None, f"{focus_info}")]
# save history
history.append({"role": "user", "content": user_query})
history.append({"role": "assistant", "content": focus_info})
print("new_cap",focus_info)
read_info = re.sub(r'[#[\]!*]','',focus_info)
read_info = emoji.replace_emoji(read_info,replace="")
print("read info",read_info)
gender="male"
try:
if autoplay==False:
return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None,log_state,history
audio_output = await texttospeech(read_info, language,gender)
print("done")
# return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, audio_output,log_state,history
except Exception as e:
state = state + [(None, f"Error during TTS prediction: {str(e)}")]
print(f"Error during TTS prediction: {str(e)}")
# return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None, None
return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, audio_output,log_state,history
else:
state = state + [(None, f"Error during TTS prediction: {str(e)}")]
print(f"Error during TTS prediction: {str(e)}")
return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None,None,log_state,history
def export_chat_log(chat_state,log_list,narrative):
try:
chat_log=""
if not chat_state:
return None
for entry in chat_state:
user_message, bot_response = entry
if user_message and bot_response:
chat_log += f"User: {user_message}\nBot: {bot_response}\n"
elif user_message and user_message.startswith("%%"):
chat_log += f"{user_message}\n"
elif user_message:
chat_log += f"User: {user_message}\n"
chat_log += f"///// \n"
elif bot_response:
chat_log += f"Bot: {bot_response}\n"
chat_log += f"///// \n"
print("export log...")
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
file_name = f"{current_time}_{narrative}.txt"
file_path = os.path.join(os.getcwd(), file_name) # Save to the current working directory
with open(file_path, 'w', encoding='utf-8') as file:
file.write(chat_log)
print(file_path)
log_list.append(file_path)
return log_list,log_list
except Exception as e:
print(f"An error occurred while exporting the chat log: {e}")
return None,None
async def get_recommendation(new_crop, image_path, openai_api_key, language, autoplay, length,
log_state, sort_score, narrative, state, recommend_type, artist,
recommended_path):
prompt = recommender.generate_recommendation_prompt(
recommend_type=recommend_type,
narrative=narrative,
language=language,
length=length,
artist=artist
)
image_paths = [new_crop, recommended_path] if recommend_type == "Item" else [image_path, recommended_path]
result = get_gpt_response(openai_api_key, image_paths, prompt)
print("recommend result", result)
log_message = (
"User wants to know object recomendation reason"
if recommend_type == "Item"
else "User wants to know style recomendation reason"
)
state += [(None, f"{result}")]
log_state += [(log_message, None)]
log_state = log_state + [(narrative, None)]
log_state = log_state + [(f"image sort ranking {sort_score}", None)]
log_state = log_state + [(None, f"{result}")]
read_info = re.sub(r'[#[\]!*]', '', result)
read_info = emoji.replace_emoji(read_info, replace="")
print("associate", read_info)
audio_output = None
if autoplay:
audio_output = await texttospeech(read_info, language)
return state, state, audio_output, log_state, None, gr.update(value=[])
def change_naritive(session_type,image_input, state, click_state, paragraph, origin_image,narritive,task_instruct,gallery_output,style_gallery_result,reco_reasons,language="English"):
if session_type=="Session 1":
return None, [], [], [[], [], []], "", None, None, [], [],[],[],gr.update(value="Preview"),None
else:
if language=="English":
if narritive=="Narrator" :
state += [
(
None,
f"🤖 Hi, I am EyeSee. Let's explore this painting together."
)
]
elif narritive=="Artist":
state += [
(
None,
f"🧑🎨 Let's delve into it from the perspective of the artist."
)
]
elif narritive=="In-Situ":
state += [
(
None,
f"🎨 Let's delve into it from the perspective of the objects depicted in the scene."
)
]
elif language=="Chinese":
if narritive=="Narrator" :
state += [
(
None,
"🤖 让我们从第三方视角一起探索这幅画吧。"
)
]
elif narritive == "Artist":
state += [
(
None,
"🧑🎨 让我们从艺术家的视角深入探索这幅画。"
)
]
elif narritive == "In-Situ":
state += [
(
None,
"🎨 让我们从画面中事物的视角深入探索这幅画。"
)
]
return image_input, state, state, click_state, paragraph, origin_image,task_instruct,gallery_output,style_gallery_result,reco_reasons,reco_reasons,gr.update(value="Preview"),None
def print_like_dislike(x: gr.LikeData,state,log_state):
print(x.index, x.value, x.liked)
if x.liked == True:
print("liked")
log_state=log_state+[(f"User liked this message", None)]
state = state + [(None, f"Liked Received 👍")]
else:
log_state=log_state+[(f"User disliked this message", None)]
state = state + [(None, f"Disliked Received 👎")]
log_state+=[("%% user interaction %%", None)]
return log_state,state
def get_recommendationscore(index,score,log_state):
log_state+=[(f"{index} : {score}",None)]
log_state+=[("%% recommendation %%",None)]
return log_state
add_icon_path="assets/icons/plus-square-blue.png"
minus_icon_path="assets/icons/minus-square.png"
def toggle_icons_and_update_prompt(point_prompt):
new_prompt = "Negative" if point_prompt == "Positive" else "Positive"
new_add_icon = "assets/icons/plus-square-blue.png" if new_prompt == "Positive" else "assets/icons/plus-square.png"
new_add_css = "tools_button_clicked" if new_prompt == "Positive" else "tools_button"
new_minus_icon = "assets/icons/minus-square.png" if new_prompt == "Positive" else "assets/icons/minus-square-blue.png"
new_minus_css= "tools_button" if new_prompt == "Positive" else "tools_button_clicked"
return new_prompt, gr.update(icon=new_add_icon,elem_classes=new_add_css), gr.update(icon=new_minus_icon,elem_classes=new_minus_css)
with open('styles.css', 'r') as file:
css = file.read()
def create_ui():
print(6)
title = """<p><h1 align="center">EyeSee Anything in Art</h1></p>
"""
description = """<p>Gradio demo for EyeSee Anything in Art, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. """
examples = [
["assets/test_images/1.The Ambassadors.jpg","assets/test_images/task1.jpg","task 1"],
["assets/test_images/2.Football Players.jpg","assets/test_images/task2.jpg","task 2"],
["assets/test_images/3-square.jpg","assets/test_images/task3.jpg","task 3"]]
with gr.Blocks(
css=css,
theme=gr.themes.Base()
) as iface:
#display in the chatbox
state = gr.State([])
# export in log
log_state=gr.State([])
# history log for gpt
history_log=gr.State([])
out_state = gr.State(None)
click_state = gr.State([[], [], []])
origin_image = gr.State(None)
image_embedding = gr.State(None)
text_refiner = gr.State(None)
original_size = gr.State(None)
input_size = gr.State(None)
paragraph = gr.State("")
aux_state = gr.State([])
click_index_state = gr.State((0, 0))
input_mask_state = gr.State(np.zeros((1, 1)))
input_points_state = gr.State([])
input_labels_state = gr.State([])
new_crop_save_path = gr.State(None)
image_input_nobackground = gr.State(None)
artist=gr.State(None)
gr.Markdown(title)
gr.Markdown(description)
point_prompt = gr.State("Positive")
log_list=gr.State([])
gender=gr.State('female')
image_path=gr.State('')
pic_index=gr.State(None)
recomended_state=gr.State([])
recomended_path=gr.State(None)
recomended_type=gr.State(None)
with gr.Row():
with gr.Column(scale=6):
with gr.Column(visible=False) as modules_not_need_gpt:
with gr.Row():
naritive = gr.Radio(
choices=["Narrator", "Artist","In-Situ"],
value="Narrator",
label="Select Mode",
scale=5,
interactive=True)
add_button = gr.Button(value="Extend Area", interactive=True,elem_classes="tools_button_add",icon=add_icon_path)
minus_button = gr.Button(value="Remove Area", interactive=True,elem_classes="tools_button",icon=minus_icon_path)
clear_button_click = gr.Button(value="Reset", interactive=True,elem_classes="tools_button",icon="assets/icons/recycle.png")
auto_play = gr.Checkbox(
label="Check to autoplay audio", value=False, elem_classes="custom-autoplay",visible=False)
output_audio = gr.HTML(
label="Synthesised Audio", elem_classes="custom-output", visible=False)
with gr.Row():
with gr.Column(scale=1,min_width=50,visible=False) as instruct:
task_instuction=gr.Image(type="pil", interactive=False, elem_classes="task_instruct",height=650,label="Instruction")
with gr.Column(scale=6):
with gr.Tab("Click") as click_tab:
with gr.Row():
with gr.Column(scale=10,min_width=600):
image_input = gr.Image(type="pil", interactive=True, elem_classes="image_upload",height=650)
example_image = gr.Image(type="pil", interactive=False, visible=False)
# example_image_click = gr.Image(type="pil", interactive=False, visible=False)
# the tool column
with gr.Column(scale=1,elem_id="tool_box",min_width=80):
name_label = gr.Button(value="Name: ",elem_classes="info_btn")
artist_label = gr.Button(value="Artist: ",elem_classes="info_btn_interact")
year_label = gr.Button(value="Year: ",elem_classes="info_btn_interact")
material_label = gr.Button(value="Style: ",elem_classes="info_btn")
focus_d = gr.Button(value="Describe",interactive=True,elem_classes="function_button")
focus_da = gr.Button(value="D+Analysis",interactive=True,elem_classes="function_button")
focus_dai = gr.Button(value="DA+Interprete",interactive=True,elem_classes="function_button")
focus_dda = gr.Button(value="Judge",interactive=True,elem_classes="function_button")
recommend_btn = gr.Button(value="Recommend",interactive=True,elem_classes="function_button_rec")
with gr.Column(visible=False,scale=4) as modules_need_gpt1:
with gr.Row(visible=False):
sentiment = gr.Radio(
choices=["Positive", "Natural", "Negative"],
value="Natural",
label="Sentiment",
interactive=True,
)
factuality = gr.Radio(
choices=["Factual", "Imagination"],
value="Factual",
label="Factuality",
interactive=True,
)
enable_wiki = gr.Radio(
choices=["Yes", "No"],
value="No",
label="Expert",
interactive=True)
with gr.Column(visible=True) as modules_not_need_gpt3:
gr.Examples(
examples=examples,
inputs=[example_image],
)
with gr.Column(scale=4):
with gr.Column(visible=True) as module_key_input:
openai_api_key = gr.Textbox(
value="",
placeholder="Input openAI API key",
show_label=False,
label="OpenAI API Key",
lines=1,
type="password")
with gr.Row():
enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary')
with gr.Column(visible=False) as module_notification_box:
notification_box = gr.Textbox(lines=1, label="Notification", max_lines=5, show_label=False)
with gr.Column(visible=False) as modules_not_need_gpt2:
with gr.Blocks():
chatbot = gr.Chatbot(label="Chatbox", elem_classes="chatbot",likeable=True,height=750,bubble_full_width=False)
with gr.Column() as modules_need_gpt3:
chat_input = gr.MultimodalTextbox(interactive=True, file_types=[".txt"], placeholder="Message EyeSee...", show_label=False)
with gr.Row():
clear_button_text = gr.Button(value="Clear Chat", interactive=True)
export_button = gr.Button(value="Export Chat Log", interactive=True, variant="primary")
with gr.Row(visible=False):
with gr.Column():
with gr.Row():
click_mode = gr.Radio(
choices=["Continuous", "Single"],
value="Continuous",
label="Clicking Mode",
scale=5,
interactive=True)
with gr.Row():
with gr.Column(scale=6):
with gr.Row():
with gr.Column(visible=False) as recommend:
gallery_result = gr.Gallery(
label="Object-based Recommendation",
height="auto",
columns=2,
interactive=False)
style_gallery_result = gr.Gallery(
label="Style-based Recommendation",
height="auto",
columns=2,
interactive=False)
with gr.Column(scale=3,visible=False) as reco_preview:
selected_image = gr.Image(label="Selected Image", interactive=False)
sort_rec = gr.Radio(
choices=[1,2,3,4,5,6,7],
label="Score",
visible=False,
interactive=True,info="Please sort the recommendation artwork")
recommend_type = gr.Radio(
choices=["Preview","Reasons"],
label="Information Type",
value="Preview",
interactive=True,visible=False)
with gr.Column(scale=4,visible=False) as reco_reasons:
recommend_bot = gr.Chatbot(label="Recommend Reasons", elem_classes="chatbot",height=600)
recommend_score = gr.Radio(
choices=[1,2,3,4,5,6,7],
label="Score",
interactive=True,info='Please score the recommendation reasons')
with gr.Row():
task_type = gr.Textbox(visible=False)
gr.Examples(
examples=examples,
inputs=[example_image,task_instuction,task_type],
)
with gr.Row(visible=False) as export:
chat_log_file = gr.File(label="Download Chat Log",scale=5)
with gr.Row(elem_id="top_row",visible=False) as top_row:
session_type = gr.Dropdown(
["Session 1","Session 2"],
value="Session 1", label="Task", interactive=True, elem_classes="custom-language"
)
language = gr.Dropdown(
['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"],
value="English", label="Language", interactive=True, elem_classes="custom-language"
)
length = gr.Slider(
minimum=60,
maximum=120,
value=80,
step=1,
interactive=True,
label="Generated Caption Length",
)
recommend_btn.click(
fn=recommender.infer,
inputs=[new_crop_save_path,image_path,state,language,task_type],
outputs=[gallery_result,style_gallery_result,chatbot,state]
)
gallery_result.select(
recommender.item_associate,
inputs=[new_crop_save_path,openai_api_key,language,auto_play,length,log_state,sort_rec,naritive,recomended_state],
outputs=[recommend_bot,recomended_state,output_audio,log_state,pic_index,recommend_score,selected_image,recomended_path, recomended_type],
)
style_gallery_result.select(
recommender.style_associate,
inputs=[image_path,openai_api_key,language,auto_play,length,log_state,sort_rec,naritive,recomended_state,artist_label],
outputs=[recommend_bot,recomended_state,output_audio,log_state,pic_index,recommend_score,selected_image,recomended_path,recomended_type])
selected_image.select(
get_recommendation,
inputs=[new_crop_save_path,image_path, openai_api_key,language,auto_play,length,log_state,sort_rec,naritive,recomended_state,recomended_type,artist_label,recomended_path],
outputs=[recommend_bot,recomended_state,output_audio,log_state,pic_index,recommend_score])
chatbot.like(print_like_dislike, inputs=[state,log_state], outputs=[log_state,chatbot])
recommend_score.select(
get_recommendationscore,
inputs=[pic_index,recommend_score,log_state],
outputs=[log_state],
)
openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key],
outputs=[export, modules_need_gpt1, modules_need_gpt3, modules_not_need_gpt,
modules_not_need_gpt2, module_key_input ,module_notification_box, text_refiner, notification_box,top_row,recommend,reco_reasons,instruct,modules_not_need_gpt3,sort_rec,reco_preview])
enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key],
outputs=[export,modules_need_gpt1, modules_need_gpt3,
modules_not_need_gpt,
modules_not_need_gpt2,module_key_input,module_notification_box, text_refiner, notification_box,top_row,recommend,reco_reasons,instruct,modules_not_need_gpt3,sort_rec,reco_preview])
artist_label.click(
get_artistinfo,
inputs=[artist_label,openai_api_key,state,language,auto_play,length,log_state],
outputs=[chatbot,state,output_audio,log_state]
)
year_label.click(
get_yearinfo,
inputs=[year_label,openai_api_key,state,language,auto_play,length,log_state],
outputs=[chatbot,state,output_audio,log_state]
)
def reset_and_add(origin_image):
new_prompt = "Positive"
new_add_icon = "assets/icons/plus-square-blue.png"
new_add_css = "tools_button_clicked"
new_minus_icon = "assets/icons/minus-square.png"
new_minus_css= "tools_button"
return [[],[],[]],origin_image, new_prompt, gr.update(icon=new_add_icon,elem_classes=new_add_css), gr.update(icon=new_minus_icon,elem_classes=new_minus_css)
clear_button_click.click(
reset_and_add,
[origin_image],
[click_state, image_input,point_prompt,add_button,minus_button],
queue=False,
show_progress=False
)
clear_button_text.click(
lambda: ([], [], [[], [], [], []],[]),
[],
[chatbot, state, click_state,history_log],
queue=False,
show_progress=False
)
image_input.clear(
lambda: (None, [], [], [[], [], []], "", None, []),
[],
[image_input, chatbot, state, click_state, paragraph, origin_image,history_log],
queue=False,
show_progress=False
)
image_input.upload(upload_callback, [image_input, state, log_state,task_type,openai_api_key,language,naritive,history_log,auto_play,session_type],
[chatbot, state, origin_image, click_state, image_input,image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,\
paragraph,artist,gender,image_path,log_state,history_log,output_audio])
chat_input.submit(chat_input_callback, [chat_input,state, aux_state,language,auto_play,gender,openai_api_key,image_path,log_state,history_log,naritive],
[chatbot, state, aux_state,output_audio,log_state,history_log])
chat_input.submit(lambda: {"text": ""}, None, chat_input)
example_image.change(upload_callback, [example_image, state, log_state, task_type, openai_api_key,language,naritive,history_log,auto_play,session_type],
[chatbot, state, origin_image, click_state, image_input, image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,\
paragraph,artist,gender,image_path, log_state,history_log,output_audio])
example_image.change(
lambda:([],[],[],None,[],gr.update(value="Preview"),None),
[],
[gallery_result,style_gallery_result,recommend_bot,new_crop_save_path,chatbot,recommend_type,selected_image])
image_input.select(
inference_click,
inputs=[
origin_image, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length,
image_embedding, state, click_state, original_size, input_size, text_refiner,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state
],
outputs=[chatbot, state, click_state, image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,new_crop_save_path,image_input_nobackground],
show_progress=False, queue=True
)
focus_d.click(
submit_caption,
inputs=[
naritive, state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state, auto_play, paragraph,focus_d,openai_api_key,new_crop_save_path,gender,log_state,history_log
],
outputs=[
chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,output_audio,log_state,history_log
],
show_progress=True,
queue=True
)
focus_da.click(
submit_caption,
inputs=[
naritive,state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,auto_play, paragraph,focus_da,openai_api_key,new_crop_save_path,gender,log_state,
history_log
],
outputs=[
chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,output_audio,log_state,history_log
],
show_progress=True,
queue=True
)
focus_dai.click(
submit_caption,
inputs=[
naritive,state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
auto_play, paragraph,focus_dai,openai_api_key,new_crop_save_path,gender,log_state,history_log
],
outputs=[
chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,output_audio,log_state,history_log
],
show_progress=True,
queue=True
)
focus_dda.click(
submit_caption,
inputs=[
naritive,state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
auto_play, paragraph,focus_dda,openai_api_key,new_crop_save_path,gender,log_state,history_log
],
outputs=[
chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,output_audio,log_state,history_log
],
show_progress=True,
queue=True
)
add_button.click(
toggle_icons_and_update_prompt,
inputs=[point_prompt],
outputs=[point_prompt,add_button,minus_button],
show_progress=True,
queue=True
)
minus_button.click(
toggle_icons_and_update_prompt,
inputs=[point_prompt],
outputs=[point_prompt,add_button,minus_button],
show_progress=True,
queue=True
)
export_button.click(
export_chat_log,
inputs=[log_state,log_list,naritive],
outputs=[chat_log_file,log_list],
queue=True
)
naritive.change(
change_naritive,
[session_type, image_input, state, click_state, paragraph, origin_image,naritive,
task_instuction,gallery_result,style_gallery_result,recomended_state,language],
[image_input, chatbot, state, click_state, paragraph, origin_image,task_instuction,gallery_result,style_gallery_result,recomended_state,recommend_bot,recommend_type,selected_image],
queue=False,
show_progress=False
)
def change_session():
instruction=Image.open('test_images/task4.jpg')
return None, [], [], [[], [], []], "", None, [],[],instruction,"task 4",[],[],[]
session_type.change(
change_session,
[],
[image_input, chatbot, state, click_state, paragraph, origin_image,history_log,log_state,task_instuction,task_type,gallery_result,style_gallery_result,recommend_bot]
)
return iface
if __name__ == '__main__':
print("main")
iface = create_ui()
iface.queue(api_open=False, max_size=10)
iface.launch(server_name="0.0.0.0") |