MotionLLM / lit_gpt /config.py
EvanTHU
update
445d3d1
raw
history blame
31.7 kB
import json
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Literal, Optional, Type, Union
import torch
from typing_extensions import Self
import lit_gpt.model
from lit_gpt.utils import find_multiple
@dataclass
class Config:
org: str = "Lightning-AI"
name: str = "lit-GPT"
block_size: int = 4096
vocab_size: int = 50254
padding_multiple: int = 512
padded_vocab_size: Optional[int] = None
n_layer: int = 16
n_head: int = 32
n_embd: int = 4096
rotary_percentage: float = 0.25
parallel_residual: bool = True
bias: bool = True
lm_head_bias: bool = False
# to use multi-head attention (MHA), set this to `n_head` (default)
# to use multi-query attention (MQA), set this to 1
# to use grouped-query attention (GQA), set this to a value in between
# Example with `n_head=4`
# ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
# │ v ││ v ││ v ││ v │ │ v │ │ v │ │ v │
# └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘
# │ │ │ │ │ │ │
# ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
# │ k ││ k ││ k ││ k │ │ k │ │ k │ │ k │
# └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘
# │ │ │ │ ┌──┴──┐ ┌──┴──┐ ┌────┬──┴─┬────┐
# ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐
# │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │
# └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘
# ◀──────────────────▶ ◀──────────────────▶ ◀──────────────────▶
# MHA GQA MQA
# n_query_groups=4 n_query_groups=2 n_query_groups=1
#
# credit https://arxiv.org/pdf/2305.13245.pdf
n_query_groups: Optional[int] = None
shared_attention_norm: bool = False
_norm_class: Literal["LayerNorm", "RMSNorm"] = "LayerNorm"
norm_eps: float = 1e-5
_mlp_class: Literal["GptNeoxMLP", "LLaMAMLP"] = "GptNeoxMLP"
gelu_approximate: str = "none"
intermediate_size: Optional[int] = None
rope_condense_ratio: int = 1
rope_base: int = 10000
def __post_init__(self):
assert self.n_embd % self.n_head == 0
self.head_size = self.n_embd // self.n_head
# vocab size should be a power of 2 to be optimal on hardware. compute the closest value
if self.padded_vocab_size is None:
self.padded_vocab_size = find_multiple(self.vocab_size, self.padding_multiple)
else:
# vocab size shouldn't be larger than padded vocab size
self.vocab_size = min(self.vocab_size, self.padded_vocab_size)
# compute the number of query groups
if self.n_query_groups is not None:
assert self.n_head % self.n_query_groups == 0
else:
self.n_query_groups = self.n_head
# compute the intermediate size for MLP if not set
if self.intermediate_size is None:
if self._mlp_class == "LLaMAMLP":
raise ValueError("The config needs to set the `intermediate_size`")
self.intermediate_size = 4 * self.n_embd
self.rope_n_elem = int(self.rotary_percentage * self.head_size)
@classmethod
def from_name(cls, name: str, **kwargs: Any) -> Self:
conf_dict = name_to_config[name].copy()
if "condense_ratio" in kwargs: # legacy name
kwargs["rope_condense_ratio"] = kwargs.pop("condense_ratio")
conf_dict.update(kwargs)
return cls(**conf_dict)
@classmethod
def from_json(cls, path: Union[str, Path], **kwargs: Any) -> Self:
with open(path, encoding="utf-8") as fp:
json_kwargs = json.load(fp)
if "condense_ratio" in json_kwargs: # legacy name
json_kwargs["rope_condense_ratio"] = json_kwargs.pop("condense_ratio")
if "condense_ratio" in kwargs: # legacy name
kwargs["rope_condense_ratio"] = kwargs.pop("condense_ratio")
json_kwargs.update(kwargs)
return cls(**json_kwargs)
@property
def mlp_class(self) -> Type:
# `self._mlp_class` cannot be the type to keep the config json serializable
return getattr(lit_gpt.model, self._mlp_class)
@property
def norm_class(self) -> Type:
# `self._norm_class` cannot be the type to keep the config json serializable
if self._norm_class == "RMSNorm":
from lit_gpt.rmsnorm import RMSNorm
return RMSNorm
return getattr(torch.nn, self._norm_class)
########################
# Stability AI StableLM
########################
configs = [
# https://huggingface.co./stabilityai/stablelm-base-alpha-3b/blob/main/config.json
dict(org="stabilityai", name="stablelm-base-alpha-3b"),
# https://huggingface.co./stabilityai/stablelm-base-alpha-7b/blob/main/config.json
dict(org="stabilityai", name="stablelm-base-alpha-7b", n_head=48, n_embd=6144, padding_multiple=256),
# https://huggingface.co./stabilityai/stablelm-tuned-alpha-3b/blob/main/config.json
dict(org="stabilityai", name="stablelm-tuned-alpha-3b", n_head=32),
# https://huggingface.co./stabilityai/stablelm-tuned-alpha-7b/blob/main/config.json
dict(org="stabilityai", name="stablelm-tuned-alpha-7b", n_head=48, n_embd=6144, padding_multiple=256),
]
####################
# EleutherAI Pythia
####################
pythia = [
# https://huggingface.co./EleutherAI/pythia-70m/blob/main/config.json
dict(org="EleutherAI", name="pythia-70m", block_size=2048, n_layer=6, n_embd=512, n_head=8, padding_multiple=128),
# https://huggingface.co./EleutherAI/pythia-160m/blob/main/config.json
dict(
org="EleutherAI", name="pythia-160m", block_size=2048, n_layer=12, n_embd=768, n_head=12, padding_multiple=128
),
# https://huggingface.co./EleutherAI/pythia-410m/blob/main/config.json
dict(
org="EleutherAI", name="pythia-410m", block_size=2048, n_layer=24, n_embd=1024, n_head=16, padding_multiple=128
),
# https://huggingface.co./EleutherAI/pythia-1b/blob/main/config.json
dict(org="EleutherAI", name="pythia-1b", block_size=2048, n_embd=2048, n_head=8, padding_multiple=128),
# https://huggingface.co./EleutherAI/pythia-1.4b/blob/main/config.json
dict(
org="EleutherAI", name="pythia-1.4b", block_size=2048, n_layer=24, n_embd=2048, n_head=16, padding_multiple=128
),
# https://huggingface.co./EleutherAI/pythia-2.8b/blob/main/config.json
dict(org="EleutherAI", name="pythia-2.8b", block_size=2048, n_layer=32, n_embd=2560, padding_multiple=128),
# https://huggingface.co./EleutherAI/pythia-6.9b/blob/main/config.json
dict(org="EleutherAI", name="pythia-6.9b", block_size=2048, n_layer=32, padding_multiple=256),
# https://huggingface.co./EleutherAI/pythia-12b/blob/main/config.json
dict(org="EleutherAI", name="pythia-12b", block_size=2048, n_layer=36, n_embd=5120, n_head=40),
]
configs.extend(pythia)
for c in pythia:
copy = c.copy()
copy["name"] = f"{c['name']}-deduped"
configs.append(copy)
####################################
# togethercomputer RedPajama INCITE
####################################
redpajama_incite = [
# https://huggingface.co./togethercomputer/RedPajama-INCITE-Base-3B-v1/blob/main/config.json
dict(
org="togethercomputer",
name="RedPajama-INCITE-{}-3B-v1",
block_size=2048,
n_layer=32,
n_embd=2560,
padding_multiple=256,
rotary_percentage=1.0,
parallel_residual=False,
),
# https://huggingface.co./togethercomputer/RedPajama-INCITE-7B-Base/blob/main/config.json
dict(
org="togethercomputer",
name="RedPajama-INCITE-7B-{}",
block_size=2048,
n_layer=32,
padding_multiple=256,
rotary_percentage=1.0,
parallel_residual=False,
),
# this redirects to the checkpoint above. kept for those who had the old weights already downloaded
dict(
org="togethercomputer",
name="RedPajama-INCITE-{}-7B-v0.1",
block_size=2048,
n_layer=32,
padding_multiple=256,
rotary_percentage=1.0,
parallel_residual=False,
),
]
for c in redpajama_incite:
for kind in ("Base", "Chat", "Instruct"):
copy = c.copy()
copy["name"] = c["name"].format(kind)
configs.append(copy)
#################
# TII UAE Falcon
#################
falcon = [
# https://huggingface.co./tiiuae/falcon-7b/blob/main/config.json
dict(
org="tiiuae",
name="falcon-7b{}",
block_size=2048,
vocab_size=65024,
padded_vocab_size=65024,
n_layer=32,
n_head=71,
n_embd=4544,
rotary_percentage=1.0,
n_query_groups=1,
bias=False,
# this is not in the config, but in the original model implementation, only for this config
shared_attention_norm=True,
),
# https://huggingface.co./tiiuae/falcon-40b/blob/main/config.json
dict(
org="tiiuae",
name="falcon-40b{}",
block_size=2048,
vocab_size=65024,
padded_vocab_size=65024,
n_layer=60,
n_head=128,
n_embd=8192,
rotary_percentage=1.0,
n_query_groups=8,
bias=False,
),
]
for c in falcon:
for kind in ("", "-instruct"):
copy = c.copy()
copy["name"] = c["name"].format(kind)
configs.append(copy)
# https://huggingface.co./tiiuae/falcon-180b/blob/main/config.json
falcon180b = dict(
org="tiiuae",
name="falcon-180B{}",
block_size=2048,
vocab_size=65024,
padded_vocab_size=65024,
n_layer=80,
n_head=232,
n_embd=14848,
rotary_percentage=1.0,
n_query_groups=8,
bias=False,
)
for kind in ("", "-chat"):
copy = falcon180b.copy()
copy["name"] = falcon180b["name"].format(kind)
configs.append(copy)
#############################
# OpenLM Research Open LLaMA
#############################
open_LLaMA = [
# https://huggingface.co./openlm-research/open_llama_3b/blob/main/config.json
dict(
org="openlm-research",
name="open_llama_3b",
block_size=2048,
vocab_size=32000,
padding_multiple=64,
n_layer=26,
n_embd=3200,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-6,
_mlp_class="LLaMAMLP",
intermediate_size=8640,
),
# https://huggingface.co./openlm-research/open_llama_7b/blob/main/config.json
dict(
org="openlm-research",
name="open_llama_7b",
block_size=2048,
vocab_size=32000,
padding_multiple=64,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-6,
_mlp_class="LLaMAMLP",
intermediate_size=11008,
),
# https://huggingface.co./openlm-research/open_llama_13b/blob/main/config.json
dict(
org="openlm-research",
name="open_llama_13b",
block_size=2048,
vocab_size=32000,
padding_multiple=64,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-6,
_mlp_class="LLaMAMLP",
intermediate_size=13824,
),
]
configs.extend(open_LLaMA)
###############
# LMSYS Vicuna
###############
vicuna = [
# https://huggingface.co./lmsys/vicuna-7b-v1.3/blob/main/config.json
dict(
org="lmsys",
name="vicuna-7b-v1.3",
block_size=2048,
vocab_size=32000,
padding_multiple=64,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-6,
_mlp_class="LLaMAMLP",
intermediate_size=11008,
),
# https://huggingface.co./lmsys/vicuna-13b-v1.3/blob/main/config.json
dict(
org="lmsys",
name="vicuna-13b-v1.3",
block_size=2048,
vocab_size=32000,
padding_multiple=64,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-6,
_mlp_class="LLaMAMLP",
intermediate_size=13824,
),
# https://huggingface.co./lmsys/vicuna-33b-v1.3/blob/main/config.json
dict(
org="lmsys",
name="vicuna-33b-v1.3",
block_size=2048,
vocab_size=32000,
padding_multiple=64,
n_layer=60,
n_head=52,
n_embd=6656,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-6,
_mlp_class="LLaMAMLP",
intermediate_size=17920,
),
# https://huggingface.co./lmsys/vicuna-7b-v1.5/blob/main/config.json
dict(
org="lmsys",
name="vicuna-7b-v1.5",
vocab_size=32000,
padding_multiple=64,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=11008,
),
# https://huggingface.co./lmsys/vicuna-7b-v1.5-16k/blob/main/config.json
dict(
org="lmsys",
name="vicuna-7b-v1.5-16k",
block_size=16384,
vocab_size=32000,
padding_multiple=64,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=11008,
rope_condense_ratio=4,
),
# https://huggingface.co./lmsys/vicuna-13b-v1.5/blob/main/config.json
dict(
org="lmsys",
name="vicuna-13b-v1.5",
vocab_size=32000,
padding_multiple=64,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=13824,
),
# https://huggingface.co./lmsys/vicuna-13b-v1.5-16k/blob/main/config.json
dict(
org="lmsys",
name="vicuna-13b-v1.5-16k",
block_size=16384,
vocab_size=32000,
padding_multiple=64,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=13824,
rope_condense_ratio=4,
),
]
configs.extend(vicuna)
#################
# LMSYS LongChat
#################
long_chat = [
# https://huggingface.co./lmsys/longchat-7b-16k/blob/main/config.json
dict(
org="lmsys",
name="longchat-7b-16k",
block_size=16384,
vocab_size=32000,
padding_multiple=64,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-6,
_mlp_class="LLaMAMLP",
intermediate_size=11008,
rope_condense_ratio=8,
),
# https://huggingface.co./lmsys/longchat-13b-16k/blob/main/config.json
dict(
org="lmsys",
name="longchat-13b-16k",
block_size=16384,
vocab_size=32000,
padding_multiple=64,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-6,
_mlp_class="LLaMAMLP",
intermediate_size=13824,
rope_condense_ratio=8,
),
]
configs.extend(long_chat)
######################
# NousResearch Hermes
######################
nous_research = [
# https://huggingface.co./NousResearch/Nous-Hermes-llama-2-7b/blob/main/config.json
dict(
org="NousResearch",
name="Nous-Hermes-llama-2-7b",
padded_vocab_size=32000,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=11008,
),
# https://huggingface.co./NousResearch/Nous-Hermes-13B/blob/main/config.json
dict(
org="NousResearch",
name="Nous-Hermes-13b",
block_size=2048,
vocab_size=32000,
padded_vocab_size=32001,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-6,
_mlp_class="LLaMAMLP",
intermediate_size=13824,
),
# https://huggingface.co./NousResearch/Nous-Hermes-Llama2-13b
dict(
org="NousResearch",
name="Nous-Hermes-Llama2-13b",
vocab_size=32000,
padded_vocab_size=32032,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=13824,
),
]
configs.extend(nous_research)
###############
# Meta LLaMA 2
###############
llama_2 = [
# https://huggingface.co./meta-llama/Llama-2-7b-hf/blob/main/config.json
dict(
org="meta-llama",
name="Llama-2-7b{}-hf",
vocab_size=32000,
padding_multiple=64,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=11008,
),
# https://huggingface.co./meta-llama/Llama-2-13b-hf/blob/main/config.json
dict(
org="meta-llama",
name="Llama-2-13b{}-hf",
vocab_size=32000,
padding_multiple=64,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=13824,
),
# https://huggingface.co./meta-llama/Llama-2-70b-hf/blob/main/config.json
dict(
org="meta-llama",
name="Llama-2-70b{}-hf",
vocab_size=32000,
padding_multiple=64,
n_layer=80,
n_head=64,
n_embd=8192,
n_query_groups=8,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=28672,
),
]
for c in llama_2:
for kind in ("", "-chat"):
copy = c.copy()
copy["name"] = c["name"].format(kind)
configs.append(copy)
##########################
# Stability AI FreeWilly2
##########################
freewilly_2 = [
# https://huggingface.co./stabilityai/FreeWilly2/blob/main/config.json
dict(
org="stabilityai",
name="FreeWilly2",
vocab_size=32000,
padding_multiple=64,
n_layer=80,
n_head=64,
n_embd=8192,
n_query_groups=8,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=28672,
)
]
configs.extend(freewilly_2)
##################
# Meta Code Llama
##################
code_llama = [
# https://huggingface.co./codellama/CodeLlama-7b-hf/blob/main/config.json
dict(
org="codellama",
name="CodeLlama-7b-hf",
block_size=16384,
vocab_size=32016,
padding_multiple=16,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=11008,
rope_base=1000000,
),
# https://huggingface.co./codellama/CodeLlama-13b-hf/blob/main/config.json
dict(
org="codellama",
name="CodeLlama-13b-hf",
block_size=16384,
vocab_size=32016,
padding_multiple=16,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=13824,
rope_base=1000000,
),
# https://huggingface.co./codellama/CodeLlama-34b-hf/blob/main/config.json
dict(
org="codellama",
name="CodeLlama-34b-hf",
block_size=16384,
vocab_size=32000,
padding_multiple=64,
n_layer=48,
n_head=64,
n_embd=8192,
n_query_groups=8,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=22016,
rope_base=1000000,
),
# https://huggingface.co./codellama/CodeLlama-7b-Python-hf/blob/main/config.json
dict(
org="codellama",
name="CodeLlama-7b-Python-hf",
block_size=16384,
vocab_size=32000,
padding_multiple=64,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=11008,
rope_base=1000000,
),
# https://huggingface.co./codellama/CodeLlama-13b-Python-hf/blob/main/config.json
dict(
org="codellama",
name="CodeLlama-13b-Python-hf",
block_size=16384,
vocab_size=32000,
padding_multiple=64,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=13824,
rope_base=1000000,
),
# https://huggingface.co./codellama/CodeLlama-34b-Python-hf/blob/main/config.json
dict(
org="codellama",
name="CodeLlama-34b-Python-hf",
block_size=16384,
vocab_size=32000,
padding_multiple=64,
n_layer=48,
n_head=64,
n_embd=8192,
n_query_groups=8,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=22016,
rope_base=1000000,
),
# https://huggingface.co./codellama/CodeLlama-7b-Instruct-hf/tree/main/config.json
dict(
org="codellama",
name="CodeLlama-7b-Instruct-hf",
block_size=16384,
vocab_size=32016,
padding_multiple=16,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=11008,
rope_base=1000000,
),
# https://huggingface.co./codellama/CodeLlama-13b-Instruct-hf/blob/main/config.json
dict(
org="codellama",
name="CodeLlama-13b-Instruct-hf",
block_size=2048,
vocab_size=32016,
padding_multiple=16,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=13824,
rope_base=1000000,
),
# https://huggingface.co./codellama/CodeLlama-34b-Instruct-hf/blob/main/config.json
dict(
org="codellama",
name="CodeLlama-34b-Instruct-hf",
block_size=16384,
vocab_size=32000,
padding_multiple=64,
n_layer=48,
n_head=64,
n_embd=8192,
n_query_groups=8,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=22016,
rope_base=1000000,
),
]
configs.extend(code_llama)
########################
# garage-bAInd Platypus
########################
platypus = [
# https://huggingface.co./garage-bAInd/Platypus-30B/blob/main/config.json
dict(
org="garage-bAInd",
name="Platypus-30B",
block_size=2048,
padded_vocab_size=32000,
n_layer=60,
n_head=52,
n_embd=6656,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-06,
_mlp_class="LLaMAMLP",
intermediate_size=17920,
),
# https://huggingface.co./garage-bAInd/Platypus2-7B/blob/main/config.json
dict(
org="garage-bAInd",
name="Platypus2-7B",
padded_vocab_size=32000,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=11008,
),
# https://huggingface.co./garage-bAInd/Platypus2-13B/blob/main/config.json
dict(
org="garage-bAInd",
name="Platypus2-13B",
padded_vocab_size=32000,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=13824,
),
# https://huggingface.co./garage-bAInd/Platypus2-70B/blob/main/config.json
dict(
org="garage-bAInd",
name="Platypus2-70B",
padded_vocab_size=32000,
n_layer=80,
n_head=64,
n_embd=8192,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=28672,
),
# https://huggingface.co./garage-bAInd/Camel-Platypus2-13B/blob/main/config.json
dict(
org="garage-bAInd",
name="Camel-Platypus2-13B",
padded_vocab_size=32000,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=13824,
),
# https://huggingface.co./garage-bAInd/Camel-Platypus2-70B/blob/main/config.json
dict(
org="garage-bAInd",
name="Camel-Platypus2-70B",
padded_vocab_size=32000,
n_layer=80,
n_head=64,
n_embd=8192,
n_query_groups=8,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=28672,
),
# https://huggingface.co./garage-bAInd/Stable-Platypus2-13B/blob/main/config.json
dict(
org="garage-bAInd",
name="Stable-Platypus2-13B",
padded_vocab_size=32000,
n_layer=40,
n_head=40,
n_embd=5120,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=13824,
),
# https://huggingface.co./garage-bAInd/Platypus2-70B-instruct/blob/main/config.json
dict(
org="garage-bAInd",
name="Platypus2-70B-instruct",
padded_vocab_size=32000,
n_layer=80,
n_head=64,
n_embd=8192,
n_query_groups=8,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=28672,
),
]
configs.extend(platypus)
##########################
# Stability AI StableCode
##########################
stablecode = [
# https://huggingface.co./stabilityai/stablecode-completion-alpha-3b/blob/main/config.json
dict(
org="stabilityai",
name="stablecode-completion-alpha-3b",
block_size=16384,
vocab_size=49152,
n_layer=32,
n_embd=2560,
),
# https://huggingface.co./stabilityai/stablecode-completion-alpha-3b-4k/blob/main/config.json
dict(org="stabilityai", name="stablecode-completion-alpha-3b-4k", vocab_size=49152, n_layer=32, n_embd=2560),
# https://huggingface.co./stabilityai/stablecode-instruct-alpha-3b/blob/main/config.json
dict(org="stabilityai", name="stablecode-instruct-alpha-3b", vocab_size=49152, n_layer=32, n_embd=2560),
]
configs.extend(stablecode)
##################################
# togethercomputer LLaMA-2-7B-32K
##################################
together_llama2_32k = [
# https://huggingface.co./togethercomputer/LLaMA-2-7B-32K/blob/main/config.json
dict(
org="togethercomputer",
name="LLaMA-2-7B-32K",
vocab_size=32000,
padding_multiple=64,
n_layer=32,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
_mlp_class="LLaMAMLP",
intermediate_size=11008,
rope_condense_ratio=8,
)
]
configs.extend(together_llama2_32k)
################
# Microsoft Phi
################
phi = [
# https://huggingface.co./microsoft/phi-1_5/blob/main/config.json
dict(
org="microsoft",
name="phi-1_5",
vocab_size=50257,
padded_vocab_size=51200,
block_size=2048,
n_embd=2048,
n_layer=24,
rotary_percentage=0.5, # 32 / (n_embd / n_head) = 32 / 64
shared_attention_norm=True,
lm_head_bias=True,
gelu_approximate="tanh",
)
]
configs.extend(phi)
#############
# Mistral AI
#############
mistral = [
# https://huggingface.co./mistralai/Mistral-7B-v0.1/blob/main/config.json
dict(
org="mistralai",
name="Mistral-7B-{}v0.1",
padded_vocab_size=32000,
block_size=4096, # should be 32768 but sliding window attention is not implemented
n_layer=32,
n_query_groups=8,
rotary_percentage=1.0,
parallel_residual=False,
bias=False,
_norm_class="RMSNorm",
norm_eps=1e-05,
_mlp_class="LLaMAMLP",
intermediate_size=14336,
)
]
for c in mistral:
for kind in ("", "Instruct-"):
copy = c.copy()
copy["name"] = c["name"].format(kind)
configs.append(copy)
name_to_config = {config["name"]: config for config in configs}