from __future__ import absolute_import, division, print_function import random import copy import io import os import numpy as np from PIL import Image import skimage.transform from collections import Counter import torch import torch.utils.data as data from torch import Tensor from torch.utils.data import Dataset from torchvision import transforms from torchvision.transforms.functional import InterpolationMode as IMode import utils class ImgDset(Dataset): """Customize the data set loading function and prepare low/high resolution image data in advance. Args: dataroot (str): Training data set address image_size (int): High resolution image size upscale_factor (int): Image magnification mode (str): Data set loading method, the training data set is for data enhancement, and the verification data set is not for data enhancement """ def __init__(self, dataroot: str, image_size: int, upscale_factor: int, mode: str) -> None: super(ImgDset, self).__init__() self.filenames = [os.path.join(dataroot, x) for x in os.listdir(dataroot)] if mode == "train": self.hr_transforms = transforms.Compose([ transforms.RandomCrop(image_size), transforms.RandomRotation(90), transforms.RandomHorizontalFlip(0.5), ]) else: self.hr_transforms = transforms.Resize(image_size) self.lr_transforms = transforms.Resize((image_size[0]//upscale_factor, image_size[1]//upscale_factor), interpolation=IMode.BICUBIC, antialias=True) def __getitem__(self, batch_index: int) -> [Tensor, Tensor]: # Read a batch of image data image = Image.open(self.filenames[batch_index]) # Transform image hr_image = self.hr_transforms(image) lr_image = self.lr_transforms(hr_image) # Convert image data into Tensor stream format (PyTorch). # Note: The range of input and output is between [0, 1] lr_tensor = utils.image2tensor(lr_image, range_norm=False, half=False) hr_tensor = utils.image2tensor(hr_image, range_norm=False, half=False) return lr_tensor, hr_tensor def __len__(self) -> int: return len(self.filenames) class PairedImages_w_nameList(Dataset): ''' can act as supervised or un-supervised based on flists ''' def __init__(self, flist1, flist2, transform1=None, transform2=None, do_aug=False): self.flist1 = flist1 self.flist2 = flist2 self.transform1 = transform1 self.transform2 = transform2 self.do_aug = do_aug def __getitem__(self, index): impath1 = self.flist1[index] img1 = Image.open(impath1).convert('RGB') impath2 = self.flist2[index] img2 = Image.open(impath2).convert('RGB') img1 = utils.image2tensor(img1, range_norm=False, half=False) img2 = utils.image2tensor(img2, range_norm=False, half=False) if self.transform1 is not None: img1 = self.transform1(img1) if self.transform2 is not None: img2 = self.transform2(img2) return img1, img2 def __len__(self): return len(self.flist1) class PairedImages_w_nameList_npy(Dataset): ''' can act as supervised or un-supervised based on flists ''' def __init__(self, flist1, flist2, transform1=None, transform2=None, do_aug=False): self.flist1 = flist1 self.flist2 = flist2 self.transform1 = transform1 self.transform2 = transform2 self.do_aug = do_aug def __getitem__(self, index): impath1 = self.flist1[index] img1 = np.load(impath1) impath2 = self.flist2[index] img2 = np.load(impath2) if self.transform1 is not None: img1 = self.transform1(img1) if self.transform2 is not None: img2 = self.transform2(img2) return img1, img2 def __len__(self): return len(self.flist1) # def call_paired(): # root1='./GOPRO_3840FPS_AVG_3-21/train/blur/' # root2='./GOPRO_3840FPS_AVG_3-21/train/sharp/' # flist1=glob.glob(root1+'/*/*.png') # flist2=glob.glob(root2+'/*/*.png') # dset = PairedImages_w_nameList(root1,root2,flist1,flist2) #### KITTI depth def load_velodyne_points(filename): """Load 3D point cloud from KITTI file format (adapted from https://github.com/hunse/kitti) """ points = np.fromfile(filename, dtype=np.float32).reshape(-1, 4) points[:, 3] = 1.0 # homogeneous return points def read_calib_file(path): """Read KITTI calibration file (from https://github.com/hunse/kitti) """ float_chars = set("0123456789.e+- ") data = {} with open(path, 'r') as f: for line in f.readlines(): key, value = line.split(':', 1) value = value.strip() data[key] = value if float_chars.issuperset(value): # try to cast to float array try: data[key] = np.array(list(map(float, value.split(' ')))) except ValueError: # casting error: data[key] already eq. value, so pass pass return data def sub2ind(matrixSize, rowSub, colSub): """Convert row, col matrix subscripts to linear indices """ m, n = matrixSize return rowSub * (n-1) + colSub - 1 def generate_depth_map(calib_dir, velo_filename, cam=2, vel_depth=False): """Generate a depth map from velodyne data """ # load calibration files cam2cam = read_calib_file(os.path.join(calib_dir, 'calib_cam_to_cam.txt')) velo2cam = read_calib_file(os.path.join(calib_dir, 'calib_velo_to_cam.txt')) velo2cam = np.hstack((velo2cam['R'].reshape(3, 3), velo2cam['T'][..., np.newaxis])) velo2cam = np.vstack((velo2cam, np.array([0, 0, 0, 1.0]))) # get image shape im_shape = cam2cam["S_rect_02"][::-1].astype(np.int32) # compute projection matrix velodyne->image plane R_cam2rect = np.eye(4) R_cam2rect[:3, :3] = cam2cam['R_rect_00'].reshape(3, 3) P_rect = cam2cam['P_rect_0'+str(cam)].reshape(3, 4) P_velo2im = np.dot(np.dot(P_rect, R_cam2rect), velo2cam) # load velodyne points and remove all behind image plane (approximation) # each row of the velodyne data is forward, left, up, reflectance velo = load_velodyne_points(velo_filename) velo = velo[velo[:, 0] >= 0, :] # project the points to the camera velo_pts_im = np.dot(P_velo2im, velo.T).T velo_pts_im[:, :2] = velo_pts_im[:, :2] / velo_pts_im[:, 2][..., np.newaxis] if vel_depth: velo_pts_im[:, 2] = velo[:, 0] # check if in bounds # use minus 1 to get the exact same value as KITTI matlab code velo_pts_im[:, 0] = np.round(velo_pts_im[:, 0]) - 1 velo_pts_im[:, 1] = np.round(velo_pts_im[:, 1]) - 1 val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0) val_inds = val_inds & (velo_pts_im[:, 0] < im_shape[1]) & (velo_pts_im[:, 1] < im_shape[0]) velo_pts_im = velo_pts_im[val_inds, :] # project to image depth = np.zeros((im_shape[:2])) depth[velo_pts_im[:, 1].astype(np.int), velo_pts_im[:, 0].astype(np.int)] = velo_pts_im[:, 2] # find the duplicate points and choose the closest depth inds = sub2ind(depth.shape, velo_pts_im[:, 1], velo_pts_im[:, 0]) dupe_inds = [item for item, count in Counter(inds).items() if count > 1] for dd in dupe_inds: pts = np.where(inds == dd)[0] x_loc = int(velo_pts_im[pts[0], 0]) y_loc = int(velo_pts_im[pts[0], 1]) depth[y_loc, x_loc] = velo_pts_im[pts, 2].min() depth[depth < 0] = 0 return depth def pil_loader(path): # open path as file to avoid ResourceWarning # (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: with Image.open(f) as img: return img.convert('RGB') class MonoDataset(data.Dataset): """Superclass for monocular dataloaders Args: data_path filenames height width frame_idxs num_scales is_train img_ext """ def __init__(self, data_path, filenames, height, width, frame_idxs, num_scales, is_train=False, img_ext='.jpg'): super(MonoDataset, self).__init__() self.data_path = data_path self.filenames = filenames self.height = height self.width = width self.num_scales = num_scales self.interp = Image.ANTIALIAS self.frame_idxs = frame_idxs self.is_train = is_train self.img_ext = img_ext self.loader = pil_loader self.to_tensor = transforms.ToTensor() # We need to specify augmentations differently in newer versions of torchvision. # We first try the newer tuple version; if this fails we fall back to scalars try: self.brightness = (0.8, 1.2) self.contrast = (0.8, 1.2) self.saturation = (0.8, 1.2) self.hue = (-0.1, 0.1) transforms.ColorJitter.get_params( self.brightness, self.contrast, self.saturation, self.hue) except TypeError: self.brightness = 0.2 self.contrast = 0.2 self.saturation = 0.2 self.hue = 0.1 self.resize = {} for i in range(self.num_scales): s = 2 ** i self.resize[i] = transforms.Resize((self.height // s, self.width // s), interpolation=self.interp) self.load_depth = self.check_depth() def preprocess(self, inputs, color_aug): """Resize colour images to the required scales and augment if required We create the color_aug object in advance and apply the same augmentation to all images in this item. This ensures that all images input to the pose network receive the same augmentation. """ for k in list(inputs): frame = inputs[k] if "color" in k: n, im, i = k for i in range(self.num_scales): inputs[(n, im, i)] = self.resize[i](inputs[(n, im, i - 1)]) for k in list(inputs): f = inputs[k] if "color" in k: n, im, i = k inputs[(n, im, i)] = self.to_tensor(f) inputs[(n + "_aug", im, i)] = self.to_tensor(color_aug(f)) def __len__(self): return len(self.filenames) def __getitem__(self, index): """Returns a single training item from the dataset as a dictionary. Values correspond to torch tensors. Keys in the dictionary are either strings or tuples: ("color", , ) for raw colour images, ("color_aug", , ) for augmented colour images, ("K", scale) or ("inv_K", scale) for camera intrinsics, "stereo_T" for camera extrinsics, and "depth_gt" for ground truth depth maps. is either: an integer (e.g. 0, -1, or 1) representing the temporal step relative to 'index', or "s" for the opposite image in the stereo pair. is an integer representing the scale of the image relative to the fullsize image: -1 images at native resolution as loaded from disk 0 images resized to (self.width, self.height ) 1 images resized to (self.width // 2, self.height // 2) 2 images resized to (self.width // 4, self.height // 4) 3 images resized to (self.width // 8, self.height // 8) """ inputs = {} do_color_aug = self.is_train and random.random() > 0.5 do_flip = self.is_train and random.random() > 0.5 line = self.filenames[index].split() folder = line[0] if len(line) == 3: frame_index = int(line[1]) else: frame_index = 0 if len(line) == 3: side = line[2] else: side = None for i in self.frame_idxs: if i == "s": other_side = {"r": "l", "l": "r"}[side] inputs[("color", i, -1)] = self.get_color(folder, frame_index, other_side, do_flip) else: inputs[("color", i, -1)] = self.get_color(folder, frame_index + i, side, do_flip) # adjusting intrinsics to match each scale in the pyramid for scale in range(self.num_scales): K = self.K.copy() K[0, :] *= self.width // (2 ** scale) K[1, :] *= self.height // (2 ** scale) inv_K = np.linalg.pinv(K) inputs[("K", scale)] = torch.from_numpy(K) inputs[("inv_K", scale)] = torch.from_numpy(inv_K) if do_color_aug: color_aug = transforms.ColorJitter.get_params( self.brightness, self.contrast, self.saturation, self.hue) else: color_aug = (lambda x: x) self.preprocess(inputs, color_aug) for i in self.frame_idxs: del inputs[("color", i, -1)] del inputs[("color_aug", i, -1)] if self.load_depth: depth_gt = self.get_depth(folder, frame_index, side, do_flip) inputs["depth_gt"] = np.expand_dims(depth_gt, 0) inputs["depth_gt"] = torch.from_numpy(inputs["depth_gt"].astype(np.float32)) if "s" in self.frame_idxs: stereo_T = np.eye(4, dtype=np.float32) baseline_sign = -1 if do_flip else 1 side_sign = -1 if side == "l" else 1 stereo_T[0, 3] = side_sign * baseline_sign * 0.1 inputs["stereo_T"] = torch.from_numpy(stereo_T) return inputs def get_color(self, folder, frame_index, side, do_flip): raise NotImplementedError def check_depth(self): raise NotImplementedError def get_depth(self, folder, frame_index, side, do_flip): raise NotImplementedError class KITTIDataset(MonoDataset): """Superclass for different types of KITTI dataset loaders """ def __init__(self, *args, **kwargs): super(KITTIDataset, self).__init__(*args, **kwargs) # NOTE: Make sure your intrinsics matrix is *normalized* by the original image size. # To normalize you need to scale the first row by 1 / image_width and the second row # by 1 / image_height. Monodepth2 assumes a principal point to be exactly centered. # If your principal point is far from the center you might need to disable the horizontal # flip augmentation. self.K = np.array([[0.58, 0, 0.5, 0], [0, 1.92, 0.5, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=np.float32) self.full_res_shape = (1242, 375) self.side_map = {"2": 2, "3": 3, "l": 2, "r": 3} def check_depth(self): line = self.filenames[0].split() scene_name = line[0] frame_index = int(line[1]) velo_filename = os.path.join( self.data_path, scene_name, "velodyne_points/data/{:010d}.bin".format(int(frame_index))) return os.path.isfile(velo_filename) def get_color(self, folder, frame_index, side, do_flip): color = self.loader(self.get_image_path(folder, frame_index, side)) if do_flip: color = color.transpose(Image.FLIP_LEFT_RIGHT) return color class KITTIDepthDataset(KITTIDataset): """KITTI dataset which uses the updated ground truth depth maps """ def __init__(self, *args, **kwargs): super(KITTIDepthDataset, self).__init__(*args, **kwargs) def get_image_path(self, folder, frame_index, side): f_str = "{:010d}{}".format(frame_index, self.img_ext) image_path = os.path.join( self.data_path, folder, "image_0{}/data".format(self.side_map[side]), f_str) return image_path def get_depth(self, folder, frame_index, side, do_flip): f_str = "{:010d}.png".format(frame_index) depth_path = os.path.join( self.data_path, folder, "proj_depth/groundtruth/image_0{}".format(self.side_map[side]), f_str) depth_gt = Image.open(depth_path) depth_gt = depth_gt.resize(self.full_res_shape, Image.NEAREST) depth_gt = np.array(depth_gt).astype(np.float32) / 256 if do_flip: depth_gt = np.fliplr(depth_gt) return depth_gt