import glob
import gradio as gr
import pandas as pd
import faiss
import clip
import torch
title = r"""
🔍 Search Similar Text/Image in the Dataset
"""
description = r"""
In this demo, we use [DiffusionDB](https://huggingface.co./datasets/poloclub/diffusiondb) instead of [LAION](https://laion.ai/blog/laion-400-open-dataset/) because LAION is currently not available.
This demo currently supports text search only.
The content will be updated to include image search once LAION is available.
The code is based on [clip-retrieval](https://github.com/rom1504/clip-retrieval) and [autofaiss](https://github.com/criteo/autofaiss)
"""
# From local file
# INDEX_DIR = "dataset/diffusiondb/text_index_folder"
# IND = faiss.read_index(f"{INDEX_DIR}/text.index")
# TEXT_LIST = pd.concat(
# pd.read_parquet(file) for file in glob.glob(f"{INDEX_DIR}/metadata/*.parquet")
# )['caption'].tolist()
# From huggingface dataset
from huggingface_hub import hf_hub_download, snapshot_download
def load_faiss_index(dataset):
index_dir = "data/faiss_index"
hf_hub_download(
repo_id="Eun02/text_image_faiss_index",
subfolder=dataset,
filename="text.index",
repo_type="dataset",
local_dir=index_dir,
)
# Download text file
snapshot_download(
repo_id="Eun02/text_image_faiss_index",
allow_patterns=f"{dataset}/*.parquet",
repo_type="dataset",
local_dir=index_dir,
)
index = faiss.read_index(f"{index_dir}/{dataset}/text.index")
text_list = pd.concat(
pd.read_parquet(file) for file in sorted(glob.glob(f"{index_dir}/{dataset}/metadata/*.parquet"))
)['caption'].tolist()
return index, text_list
# Load CLIP model
device = "cpu"
CLIP_MODEL, _ = clip.load("ViT-B/32", device=device)
@torch.inference_mode
def get_emb(text, device="cpu"):
text_tokens = clip.tokenize([text], truncate=True)
text_features = CLIP_MODEL.encode_text(text_tokens.to(device))
text_features /= text_features.norm(dim=-1, keepdim=True)
text_embeddings = text_features.cpu().numpy().astype('float32')
return text_embeddings
@torch.inference_mode
def search_text(dataset, top_k, show_score, query_text, device):
ind, text_list = load_faiss_index(dataset)
if query_text is None or query_text == "":
raise gr.Error("Query text is missing")
text_embeddings = get_emb(query_text, device)
scores, retrieved_texts = ind.search(text_embeddings, top_k)
scores, retrieved_texts = scores[0], retrieved_texts[0]
result_str = ""
for score, ind in zip(scores, retrieved_texts):
item_str = text_list[ind].strip()
if item_str == "":
continue
result_str += f"{item_str}"
if show_score:
result_str += f", {score:0.2f}"
result_str += "\n"
# file_name = query_text.replace(" ", "_")
# if show_score:
# file_name += "_score"
file_name = "output"
output_path = f"./{file_name}.txt"
with open(output_path, "w") as f:
f.writelines(result_str)
return result_str, output_path
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
dataset = gr.Dropdown(label="dataset", choices=["DiffusionDB"], value="DiffusionDB")
top_k = gr.Slider(label="top k", minimum=1, maximum=20, value=8)
show_score = gr.Checkbox(label="Show score", value=True)
query_text = gr.Textbox(label="query text")
btn = gr.Button()
with gr.Row():
result_text = gr.Textbox(label="retrieved text", interactive=False)
result_file = gr.File(label="output file")
btn.click(
fn=search_text,
inputs=[dataset, top_k, show_score, query_text],
outputs=[result_text, result_file],
)
demo.launch()