Spaces:
Sleeping
Sleeping
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer | |
import streamlit as st | |
MAX_LENGTH = 184 | |
SPECIAL_WORD = "[TODARIJA]" | |
model = AutoModelForSeq2SeqLM.from_pretrained("ckpt") | |
tokenizer = T5Tokenizer.from_pretrained("ckpt") | |
st.set_page_config("English to darija ") | |
st.title('English to Darija Translation machine by fine-tuning T5 model on Darija Open Dataset') | |
sentence = st.text_input("input your english text") | |
button = st.button("translate to Darija") | |
if button : | |
sentence = SPECIAL_WORD+" "+sentence | |
sentence = sentence.lower() | |
length = len(sentence.split()) | |
if length < MAX_LENGTH-1: | |
inputs = tokenizer(sentence, max_length=MAX_LENGTH, truncation=True, return_tensors="pt") | |
outputs =model.generate(**inputs,max_length=MAX_LENGTH) | |
decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
st.text(decoded_output) | |