import streamlit as st import pandas as pd import joblib import ee import geemap # Authenticate Earth Engine service_account = 'earth-engine-service-account@ee-esmaeilkiani1387.iam.gserviceaccount.com' credentials = ee.ServiceAccountCredentials(service_account, 'ee-esmaeilkiani1387-1b2c5e812a1d.json') ee.Initialize(credentials) # Load model and farm data model = joblib.load('updated_model.pkl') farm_data = pd.read_csv('Farm_NDRE_TimeSeries.csv') farm_names = farm_data['Farm'].tolist() # Function to calculate NDRE def calculate_ndre(coordinates, start_date, end_date): try: # Convert start_date and end_date to strings start_date_str = start_date.strftime('%Y-%m-%d') end_date_str = end_date.strftime('%Y-%m-%d') roi = ee.Geometry.Point(coordinates) imageCollection = ee.ImageCollection('COPERNICUS/S2_SR') \ .filterBounds(roi) \ .filterDate(start_date_str, end_date_str) \ .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) def ndre(image): red_edge = image.select('B8A') red = image.select('B4') return image.addBands(red_edge.subtract(red).divide(red_edge.add(red)).rename('NDRE')) ndre_image = imageCollection.map(ndre).median().select('NDRE') ndre_value = ndre_image.reduceRegion( reducer=ee.Reducer.first(), geometry=roi, scale=10 ).getInfo() return ndre_value.get('NDRE') if ndre_value else None except Exception as e: st.error(f"Error calculating NDRE: {e}") return None # Streamlit User Interface st.title("Farm Parameter Prediction App") selected_farm = st.selectbox("Select Farm", farm_names) farm_age = st.number_input("Farm Age (years)", min_value=0) farm_variety = st.text_input("Farm Variety") start_date = st.date_input("Start Date") end_date = st.date_input("End Date") # Handling Farm Data Selection and NDRE Calculation selected_farm_data = farm_data[farm_data['Farm'] == selected_farm] coordinates = (selected_farm_data['longitude'].iloc[0], selected_farm_data['latitude'].iloc[0]) if st.button('نمایش نقشه NDRE'): NDRE = calculate_ndre(coordinates, start_date, end_date) if NDRE is not None: st.session_state.ndre_value = NDRE # Store NDRE in session state st.write(f'شاخص NDRE: {NDRE}') Map = geemap.Map() Map.centerObject(ee.Geometry.Point(coordinates), 12) vis_params = {'min': 0, 'max': 1, 'palette': ['blue', 'green', 'yellow', 'red']} Map.addLayer(ee.Image(NDRE), vis_params, 'NDRE') Map.to_streamlit(height=500) else: st.error("Unable to calculate NDRE.") # Making Predictions Using the Loaded Model if st.button("Predict"): ndre_value = st.session_state.get('ndre_value', 0) user_input = pd.DataFrame({ 'Age': [farm_age], 'Variety': [farm_variety], 'NDRE': [ndre_value] }) if start_date: day_of_year = start_date.timetuple().tm_yday month = start_date.month user_input['DayOfYear'] = [day_of_year] user_input['Month'] = [month] user_input = user_input[['Age', 'DayOfYear', 'Month', 'Variety', 'NDRE']] prediction = model.predict(user_input) st.write("Predictions:") st.write(f"Brix: {prediction[0][0]}") st.write(f"Pol: {prediction[0][1]}") st.write(f"Purity: {prediction[0][2]}") st.write(f"RS: {prediction[0][3]}")