import streamlit as st import pandas as pd import joblib import ee import geemap # Earth Engine Authentication (Replace with your actual authentication) # اعتبار سنجی و اتصال به Google Earth Engine service_account = 'earth-engine-service-account@ee-esmaeilkiani1387.iam.gserviceaccount.com' credentials = ee.ServiceAccountCredentials(service_account, 'ee-esmaeilkiani1387-1b2c5e812a1d.json') ee.Initialize(credentials) # Load pre-trained model model = joblib.load('updated_model.pkl') # Replace 'updated_model.pkl' with your actual model file # Load farm data farm_data = pd.read_csv('Farm_NDRE_TimeSeries.csv') # Replace 'Farm_NDRE_TimeSeries.csv' with your actual data file farm_names = farm_data['Farm_Name'].tolist() # Function to calculate NDRE def calculate_ndre(coordinates, start_date, end_date): try: # Define the Earth Engine region of interest (ROI) roi = ee.Geometry.Point(coordinates) # Define the image collection (replace with your actual collection ID and bands) imageCollection = ee.ImageCollection('COPERNICUS/S2_SR') \ .filterBounds(roi) \ .filterDate(start_date, end_date) \ .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) #Cloud filtering # Function to compute NDRE def ndre(image): red_edge = image.select('B8A') red = image.select('B4') return image.addBands(red_edge.subtract(red).divide(red_edge.add(red)).rename('NDRE')) #Apply NDRE to all images in collection, and reduce to median ndre_image = imageCollection.map(ndre).median().select('NDRE') # Get NDRE value at the point ndre_value = ndre_image.reduceRegion( reducer=ee.Reducer.first(), geometry=roi, scale=10 ).getInfo() ndre_value = ndre_value.get('NDRE') #Extract from dictionary return ndre_value except Exception as e: st.error(f"Error calculating NDRE: {e}") return None # Streamlit UI st.title("Farm Parameter Prediction App") # User input selected_farm = st.selectbox("Select Farm", farm_names) farm_age = st.number_input("Farm Age (years)", min_value=0) farm_variety = st.text_input("Farm Variety") start_date = st.date_input("Start Date") end_date = st.date_input("End Date") #Find Coordinates based on Farm Name Selection selected_farm_data = farm_data[farm_data['Farm'] == selected_farm] coordinates = (selected_farm_data['longitude'].iloc[0], selected_farm_data['latitude'].iloc[0]) if st.button("Calculate NDRE and Show Map"): ndre_value = calculate_ndre(coordinates, start_date.strftime("%Y-%m-%d"), end_date.strftime("%Y-%m-%d")) if ndre_value is not None: st.write(f"NDRE Value: {ndre_value}") # Map Display (Replace with your actual map display logic) Map = geemap.Map() Map.centerObject(ee.Geometry.Point(coordinates), 12) # Add NDRE layer #This part requires more detailed specification of the image and display parameters. #Example (Adapt according to your NDRE image and color scheme) #vis_params = {'min': 0, 'max': 1, 'palette': ['blue', 'green', 'yellow', 'red']} #Map.addLayer(ndre_image, vis_params, 'NDRE') #Display Map Map.to_streamlit(height=500) if st.button("Predict"): user_input = pd.DataFrame({ 'Farm_Name': [selected_farm], 'Farm_Age': [farm_age], 'Farm_Variety': [farm_variety], 'NDRE': [ndre_value] if ndre_value is not None else [0] #Handle cases where ndre_value is None. Replace 0 with a more suitable default if needed. }) # Feature Engineering might be needed here depending on your model's input features prediction = model.predict(user_input) st.write("Predictions:") st.write(f"Brix: {prediction[0][0]}") #Assuming model outputs a list of lists st.write(f"Pol: {prediction[0][1]}") st.write(f"Purity: {prediction[0][2]}") st.write(f"RS: {prediction[0][3]}")