from flask import Flask, request, jsonify import numpy as np import tensorflow as tf import torch from transformers import pipeline import cv2 import os app = Flask(__name__) # Example model loading (you can replace this with your actual models) # TensorFlow model tf_model = tf.keras.models.load_model('path_to_your_tf_model') # PyTorch model torch_model = torch.load('path_to_your_torch_model') torch_model.eval() # Hugging Face Transformers pipeline (e.g., for text generation) text_gen_pipeline = pipeline("text-generation", model="gpt2") @app.route('/') def index(): return "Welcome to the AI app! Endpoints are ready." # Endpoint to make predictions using TensorFlow model @app.route('/predict_tf', methods=['POST']) def predict_tf(): data = request.json input_data = np.array(data['input']) prediction = tf_model.predict(input_data) return jsonify({"prediction": prediction.tolist()}) # Endpoint to make predictions using PyTorch model @app.route('/predict_torch', methods=['POST']) def predict_torch(): data = request.json input_data = torch.tensor(data['input']) prediction = torch_model(input_data) return jsonify({"prediction": prediction.detach().numpy().tolist()}) # Text generation using Hugging Face Transformers @app.route('/generate_text', methods=['POST']) def generate_text(): data = request.json prompt = data['prompt'] result = text_gen_pipeline(prompt, max_length=100, num_return_sequences=1) return jsonify({"generated_text": result[0]['generated_text']}) # Endpoint to process an image (using OpenCV) @app.route('/process_image', methods=['POST']) def process_image(): if 'file' not in request.files: return "No file found", 400 file = request.files['file'] img = cv2.imdecode(np.frombuffer(file.read(), np.uint8), cv2.IMREAD_COLOR) # Example processing: convert image to grayscale gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Save the processed image processed_path = 'processed_image.jpg' cv2.imwrite(processed_path, gray_img) return jsonify({"message": "Image processed", "file_path": processed_path}) # Future abilities and additional features can be added here if __name__ == '__main__': # Run the app app.run(host='0.0.0.0', port=5000, debug=True) import os os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) import os import tensorflow as tf # Set environment variable os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" # Check GPU availability print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) # Your main code goes here def main(): # Your application code pass if __name__ == "__main__": main() from transformers import AutoTokenizer, TFAutoModelForCausalLM # Load the tokenizer and model from Hugging Face using your model name tokenizer = AutoTokenizer.from_pretrained("Erfan11/Neuracraft") model = TFAutoModelForCausalLM.from_pretrained("Erfan11/Neuracraft")