from transformers import AutoModel, AutoTokenizer from flask import Flask, request, jsonify import tensorflow as tf app = Flask(__name__) # Load Hugging Face model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Erfan11/Neuracraft", use_auth_token="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") hf_model = AutoModel.from_pretrained("Erfan11/Neuracraft", use_auth_token="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") # Load TensorFlow model tf_model = tf.keras.models.load_model('path_to_your_tf_model.h5') @app.route('/predict', methods=['POST']) def predict(): data = request.get_json() # Tokenize the input using Hugging Face's tokenizer inputs = tokenizer(data["text"], return_tensors="pt") # Make prediction with Hugging Face model hf_outputs = hf_model(**inputs) # Optionally: You can also add TensorFlow model predictions here, depending on what it’s used for. # Assuming the TensorFlow model is used for something else like feature extraction tf_outputs = tf_model.predict([data["text"]]) # Modify based on your input processing return jsonify({ "hf_outputs": hf_outputs[0].tolist(), # Convert Hugging Face output to JSON serializable format "tf_outputs": tf_outputs.tolist() # Convert TensorFlow output to JSON serializable format }) if __name__ == '__main__': app.run(debug=True)