Spaces:
Sleeping
Sleeping
from flask import Flask, request, jsonify | |
import numpy as np | |
import tensorflow as tf | |
import torch | |
from transformers import pipeline | |
import cv2 | |
import os | |
app = Flask(__name__) | |
# Example model loading (you can replace this with your actual models) | |
# TensorFlow model | |
tf_model = tf.keras.models.load_model('path_to_your_tf_model') | |
# PyTorch model | |
torch_model = torch.load('path_to_your_torch_model') | |
torch_model.eval() | |
# Hugging Face Transformers pipeline (e.g., for text generation) | |
text_gen_pipeline = pipeline("text-generation", model="gpt2") | |
def index(): | |
return "Welcome to the AI app! Endpoints are ready." | |
# Endpoint to make predictions using TensorFlow model | |
def predict_tf(): | |
data = request.json | |
input_data = np.array(data['input']) | |
prediction = tf_model.predict(input_data) | |
return jsonify({"prediction": prediction.tolist()}) | |
# Endpoint to make predictions using PyTorch model | |
def predict_torch(): | |
data = request.json | |
input_data = torch.tensor(data['input']) | |
prediction = torch_model(input_data) | |
return jsonify({"prediction": prediction.detach().numpy().tolist()}) | |
# Text generation using Hugging Face Transformers | |
def generate_text(): | |
data = request.json | |
prompt = data['prompt'] | |
result = text_gen_pipeline(prompt, max_length=100, num_return_sequences=1) | |
return jsonify({"generated_text": result[0]['generated_text']}) | |
# Endpoint to process an image (using OpenCV) | |
def process_image(): | |
if 'file' not in request.files: | |
return "No file found", 400 | |
file = request.files['file'] | |
img = cv2.imdecode(np.frombuffer(file.read(), np.uint8), cv2.IMREAD_COLOR) | |
# Example processing: convert image to grayscale | |
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# Save the processed image | |
processed_path = 'processed_image.jpg' | |
cv2.imwrite(processed_path, gray_img) | |
return jsonify({"message": "Image processed", "file_path": processed_path}) | |
# Future abilities and additional features can be added here | |
if __name__ == '__main__': | |
# Run the app | |
app.run(host='0.0.0.0', port=5000, debug=True) | |
import os | |
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" | |
import tensorflow as tf | |
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) | |
import os | |
import tensorflow as tf | |
# Set environment variable | |
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" | |
# Check GPU availability | |
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) | |
# Your main code goes here | |
def main(): | |
# Your application code | |
pass | |
if __name__ == "__main__": | |
main() | |
from transformers import AutoTokenizer, TFAutoModelForCausalLM | |
# Load the tokenizer and model from Hugging Face using your model name | |
tokenizer = AutoTokenizer.from_pretrained("Erfan11/Neuracraft") | |
model = TFAutoModelForCausalLM.from_pretrained("Erfan11/Neuracraft") |