Spaces:
Sleeping
Sleeping
File size: 1,113 Bytes
9a6b849 6060814 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import os
from dotenv import load_dotenv
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load environment variables
load_dotenv()
def load_model(model_path):
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
return model, tokenizer
def predict(text, model, tokenizer):
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
return outputs
def main():
model_path = os.getenv('MODEL_PATH')
model, tokenizer = load_model(model_path)
# Example usage
text = "Sample input text"
result = predict(text, model, tokenizer)
print(result)
if __name__ == "__main__":
main()
from transformers import BertForSequenceClassification
# Load the TensorFlow model using from_tf=True
model = BertForSequenceClassification.from_pretrained(
"Erfan11/Neuracraft",
from_tf=True,
use_auth_token="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"
)
# Additional code to run your app can go here (for example, Streamlit or Gradio interface) |