Spaces:
Runtime error
Runtime error
File size: 9,842 Bytes
0122640 41e8179 17d8657 0122640 89d3c84 b1fbde1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import subprocess
subprocess.run('pip install -e .', shell=True)
print("Installed the repo!")
# GLIDE imports
from typing import Tuple
from IPython.display import display
from PIL import Image
import numpy as np
import torch as th
import torch.nn.functional as F
from glide_text2im.download import load_checkpoint
from glide_text2im.model_creation import (
create_model_and_diffusion,
model_and_diffusion_defaults,
model_and_diffusion_defaults_upsampler
)
# gradio app imports
import gradio as gr
from torchvision.transforms import ToTensor, ToPILImage
image_to_tensor = ToTensor()
tensor_to_image = ToPILImage()
# This notebook supports both CPU and GPU.
# On CPU, generating one sample may take on the order of 20 minutes.
# On a GPU, it should be under a minute.
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')
# Create base model.
options = model_and_diffusion_defaults()
options['inpaint'] = True
options['use_fp16'] = has_cuda
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
model, diffusion = create_model_and_diffusion(**options)
model.eval()
if has_cuda:
model.convert_to_fp16()
model.to(device)
model.load_state_dict(load_checkpoint('base-inpaint', device))
print('total base parameters', sum(x.numel() for x in model.parameters()))
# Create upsampler model.
options_up = model_and_diffusion_defaults_upsampler()
options_up['inpaint'] = True
options_up['use_fp16'] = has_cuda
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
model_up, diffusion_up = create_model_and_diffusion(**options_up)
model_up.eval()
if has_cuda:
model_up.convert_to_fp16()
model_up.to(device)
model_up.load_state_dict(load_checkpoint('upsample-inpaint', device))
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
# Sampling parameters
batch_size = 1
guidance_scale = 5.0
# Tune this parameter to control the sharpness of 256x256 images.
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
upsample_temp = 0.997
# Create an classifier-free guidance sampling function
def model_fn(x_t, ts, **kwargs):
half = x_t[: len(x_t) // 2]
combined = th.cat([half, half], dim=0)
model_out = model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
eps = th.cat([half_eps, half_eps], dim=0)
return th.cat([eps, rest], dim=1)
def denoised_fn(x_start):
# Force the model to have the exact right x_start predictions
# for the part of the image which is known.
return (
x_start * (1 - model_kwargs['inpaint_mask'])
+ model_kwargs['inpaint_image'] * model_kwargs['inpaint_mask']
)
def show_images(batch: th.Tensor):
""" Display a batch of images inline. """
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
return Image.fromarray(reshaped.numpy())
def read_image(path: str, size: int = 256) -> Tuple[th.Tensor, th.Tensor]:
pil_img = Image.open(path).convert('RGB')
pil_img = pil_img.resize((size, size), resample=Image.BICUBIC)
img = np.array(pil_img)
return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1
def pil_to_numpy(pil_img: Image) -> Tuple[th.Tensor, th.Tensor]:
img = np.array(pil_img)
return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1
model_kwargs = dict()
def inpaint(input_img, input_img_with_mask, prompt):
print(prompt)
# Save as png for later mask detection :)
input_img_256 = input_img.convert('RGB').resize((256, 256), resample=Image.BICUBIC)
input_img_64 = input_img.convert('RGB').resize((64, 64), resample=Image.BICUBIC)
# Source image we are inpainting
source_image_256 = pil_to_numpy(input_img_256)
source_image_64 = pil_to_numpy(input_img_64)
# Since gradio doesn't supply which pixels were drawn, we need to find it ourselves!
# Assuming that all black pixels are meant for inpainting.
input_img_with_mask_64 = input_img_with_mask.convert('L').resize((64, 64), resample=Image.BICUBIC)
gray_scale_source_image = image_to_tensor(input_img_with_mask_64)
source_mask_64 = (gray_scale_source_image!=0).float()
source_mask_64_img = tensor_to_image(source_mask_64)
# The mask should always be a boolean 64x64 mask, and then we
# can upsample it for the second stage.
source_mask_64 = source_mask_64.unsqueeze(0)
source_mask_256 = F.interpolate(source_mask_64, (256, 256), mode='nearest')
##############################
# Sample from the base model #
##############################
# Create the text tokens to feed to the model.
tokens = model.tokenizer.encode(prompt)
tokens, mask = model.tokenizer.padded_tokens_and_mask(
tokens, options['text_ctx']
)
# Create the classifier-free guidance tokens (empty)
full_batch_size = batch_size * 2
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
[], options['text_ctx']
)
# Pack the tokens together into model kwargs.
global model_kwargs
model_kwargs = dict(
tokens=th.tensor(
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
),
mask=th.tensor(
[mask] * batch_size + [uncond_mask] * batch_size,
dtype=th.bool,
device=device,
),
# Masked inpainting image
inpaint_image=(source_image_64 * source_mask_64).repeat(full_batch_size, 1, 1, 1).to(device),
inpaint_mask=source_mask_64.repeat(full_batch_size, 1, 1, 1).to(device),
)
# Sample from the base model.
model.del_cache()
samples = diffusion.p_sample_loop(
model_fn,
(full_batch_size, 3, options["image_size"], options["image_size"]),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
denoised_fn=denoised_fn,
)[:batch_size]
model.del_cache()
##############################
# Upsample the 64x64 samples #
##############################
tokens = model_up.tokenizer.encode(prompt)
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
tokens, options_up['text_ctx']
)
# Create the model conditioning dict.
model_kwargs = dict(
# Low-res image to upsample.
low_res=((samples+1)*127.5).round()/127.5 - 1,
# Text tokens
tokens=th.tensor(
[tokens] * batch_size, device=device
),
mask=th.tensor(
[mask] * batch_size,
dtype=th.bool,
device=device,
),
# Masked inpainting image.
inpaint_image=(source_image_256 * source_mask_256).repeat(batch_size, 1, 1, 1).to(device),
inpaint_mask=source_mask_256.repeat(batch_size, 1, 1, 1).to(device),
)
# Sample from the base model.
model_up.del_cache()
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
up_samples = diffusion_up.p_sample_loop(
model_up,
up_shape,
noise=th.randn(up_shape, device=device) * upsample_temp,
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
denoised_fn=denoised_fn,
)[:batch_size]
model_up.del_cache()
return source_mask_64_img, show_images(up_samples)
gradio_inputs = [gr.inputs.Image(type='pil',
label="Input Image"),
gr.inputs.Image(type='pil',
label="Input Image With Mask"),
gr.inputs.Textbox(label='Conditional Text to Inpaint')]
# gradio_outputs = [gr.outputs.Image(label='Auto-Detected Mask (From drawn black pixels)')]
gradio_outputs = [gr.outputs.Image(label='Auto-Detected Mask (From drawn black pixels)'),
gr.outputs.Image(label='Inpainted Image')]
examples = [['grass.png', 'grass_with_mask.png', 'a corgi in a field']]
title = "GLIDE Inpaint"
description = "[WARNING: Queue times may take 4-6 minutes per person if there's no GPU! If there is a GPU, it'll take around 60 seconds] Using GLIDE to inpaint black regions of an input image! Instructions: 1) For the 'Input Image', upload an image. 2) For the 'Input Image with Mask', draw a black-colored mask (either manually with something like Paint, or by using gradio's built-in image editor & add a black-colored shape) IT MUST BE BLACK COLOR, but doesn't have to be rectangular! This is because it auto-detects the mask based on 0 (black) pixel values! 3) For the Conditional Text, type something you'd like to see the black region get filled in with :)"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741' target='_blank'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im' target='_blank'>Github Repo</a> | <img src='https://visitor-badge.glitch.me/badge?page_id=epoching_glide_inpaint' alt='visitor badge'></p>"
iface = gr.Interface(fn=inpaint, inputs=gradio_inputs,
outputs=gradio_outputs,
examples=examples, title=title,
description=description, article=article,
enable_queue=True)
iface.launch() |