File size: 3,895 Bytes
dc3f74b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import cv2
import numpy as np
from collections import Counter
from time import time
import tkinter.filedialog
from tkinter import *
import sys
import gradio as gr

def k_nearest_neighbors(predict, k):
    distances = []
    for image in training_data:
        distances.append([np.linalg.norm(image[0] - predict), image[1]]) # calcul de distance euclidienne
    distances.sort()
    votes = [i[1] for i in distances[:k]]
    votes = ''.join(str(e) for e in votes)
    votes = votes.replace(',', '')
    votes = votes.replace(' ', '')
    result = Counter(votes).most_common(1)[0][0]
    return result


def test():
    start = time()
    correct = 0
    total = 0
    skipped = 0
    for i in range(len(x_test)+1):
        try:
            prediction = k_nearest_neighbors(x_test[i], 5)
            if int(prediction) == y_test[i]:
                correct += 1
            total += 1
        except Exception as e:
            print('An exception occured')
            skipped += 1
    accuracy = correct/total
    end = time()
    print(end-start)
    print(accuracy)

def ia_handler(image):
    pred = k_nearest_neighbors(img, 10)
    if pred == 0:
        return 'It\'s a coin'
    return 'It\'s a banknote'

def main():
    if len(sys.argv) > 1 and sys.argv[1] == '--cli':
        root = Tk()
        root.withdraw()
        root.update()
        filename = tkinter.filedialog.askopenfilename(title="Ouvrir fichier", filetypes=[('all files', '.*')]) # sélectionner la photo
        src = cv2.imread(cv2.samples.findFile(filename), cv2.IMREAD_COLOR) # charger la photo
        root.destroy()
        img = resize_img(src)
        pred = k_nearest_neighbors(img, 10)
        if pred == '0':
            print('Coin')
        else:
            print('Banknote')
    else:
        iface = gr.Interface(fn=ia_handler, inputs="image", outputs="text")
        iface.launch()


def resize_img(img):
    dim = (150, 150)
    new_img = cv2.resize(img, dim)
    return new_img

if __name__=="__main__":
    coin_datadir_train = '../coins-dataset/classified/train'
    coin_datadir_test = '../coins-dataset/classified/test'
    note_datadir_train = '../banknote-dataset/classified/train'
    note_datadir_test = '../banknote-dataset/classified/test'

    categories = ['1c', '2c', '5c', '10c', '20c', '50c', '1e', '2e', '5e', '10e', '20e', '50e']
    coin_index = 8

    training_data = []

    for category in categories[:coin_index]:
        path = os.path.join(coin_datadir_train, category)
        label = 0
        for img in os.listdir(path):
            img_array = cv2.imread(os.path.join(path, img))
            training_data.append([img_array, label])

    for category in categories[coin_index:]:
        path = os.path.join(note_datadir_train, category)
        label = 1
        for img in os.listdir(path):
            img_array = resize_img(cv2.imread(os.path.join(path, img)))
            training_data.append([img_array, label])


    testing_data = []

    for category in categories[:coin_index]:
        path = os.path.join(coin_datadir_test, category)
        label = 0
        for img in os.listdir(path):
            img_array = cv2.imread(os.path.join(path, img))
            testing_data.append([img_array, label])

    for category in categories[coin_index:]:
        path = os.path.join(note_datadir_test, category)
        label = 1
        for img in os.listdir(path):
            img_array = resize_img(cv2.imread(os.path.join(path, img)))
            testing_data.append([img_array, label])


    x_train = []
    y_train = []

    for features, label in training_data:
        x_train.append(features)
        y_train.append(label)
        
    x_train = np.array(x_train)


    x_test = []
    y_test = []

    for features, label in testing_data:
        x_test.append(features)
        y_test.append(label)
        
    x_test = np.array(x_test)
    main()