|
from tensorflow import keras |
|
import streamlit as st |
|
import altair as alt |
|
import plotly.express as px |
|
|
|
import pandas as pd |
|
import numpy as np |
|
from datetime import datetime |
|
|
|
|
|
import joblib |
|
|
|
from google.cloud import storage |
|
from tempfile import TemporaryFile |
|
from csv import writer |
|
from datetime import datetime |
|
import os |
|
from dotenv import load_dotenv |
|
from nltk.stem import PorterStemmer |
|
from nltk.corpus import stopwords |
|
import re |
|
from tensorflow import keras |
|
import numpy as np |
|
import pandas as pd |
|
|
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
import nltk |
|
from tensorflow.keras.preprocessing.text import one_hot |
|
|
|
|
|
import re |
|
from nltk.corpus import stopwords |
|
from nltk.stem import PorterStemmer |
|
|
|
import pickle |
|
pkl_file = open('m_lb.pkl', 'rb') |
|
le_departure = pickle.load(pkl_file) |
|
pkl_file.close() |
|
model = keras.models.load_model('m_odel.h5') |
|
nltk.download('stopwords') |
|
stopwords = set(nltk.corpus.stopwords.words('english')) |
|
vocabSize = 11000 |
|
max_len = 1160 |
|
load_dotenv() |
|
|
|
emotions_emoji_dict = { "anger":"๐ ", |
|
"disgust":"๐คฎ", |
|
"fear":"๐จ๐ฑ", |
|
"happy":"๐ค", |
|
"joy":"๐", |
|
"neutral":"๐", |
|
"sad":"๐", |
|
"sadness":"๐", |
|
"shame":"๐ณ", |
|
"surprise":"๐ฎ" |
|
} |
|
|
|
|
|
def predict_emotions(sentence): |
|
sentence = sentence_cleaning(sentence) |
|
result = le_departure.inverse_transform( |
|
np.argmax(model.predict(sentence), axis=-1))[0] |
|
proba = np.max(model.predict(sentence)) |
|
print() |
|
|
|
return result, proba, get_all_result(model.predict(sentence)) |
|
|
|
|
|
def get_all_result(prediction): |
|
dict = {} |
|
for element in prediction: |
|
for i in range(0, len(element)): |
|
dict[element[i]] = le_departure.inverse_transform([i])[0] |
|
return dict |
|
|
|
|
|
def sentence_cleaning(sentence): |
|
"""Pre-processing sentence for prediction""" |
|
stemmer = PorterStemmer() |
|
corpus = [] |
|
text = re.sub("[^a-zA-Z]", " ", sentence) |
|
text = text.lower() |
|
text = text.split() |
|
text = [stemmer.stem(word) for word in text if word not in stopwords] |
|
text = " ".join(text) |
|
corpus.append(text) |
|
one_hot_word = [one_hot(input_text=word, n=vocabSize) for word in corpus] |
|
pad = pad_sequences(sequences=one_hot_word, maxlen=max_len, padding='pre') |
|
return pad |
|
|
|
|
|
def main(): |
|
st.title("๐คฎ๐จ๐ฑEmotion Classifier๐๐ณ๐ฎ") |
|
menu = ["Home", "Monitor"] |
|
choice = st.sidebar.selectbox("Menu", menu) |
|
if choice == "Home": |
|
st.subheader("Home-Emotion In Text") |
|
|
|
with st.form(key='emotion_clf_form'): |
|
raw_text = st.text_area("Type Here") |
|
submit_text = st.form_submit_button(label='Submit') |
|
|
|
if submit_text: |
|
col1, col2 = st.columns(2) |
|
|
|
|
|
res, proba, total_result = predict_emotions(raw_text) |
|
|
|
with col1: |
|
st.success("Original Text") |
|
st.write(raw_text) |
|
|
|
st.success("Prediction") |
|
st.write("{}:{}".format(res, emotions_emoji_dict[res])) |
|
st.write("Confidence:{}".format(proba)) |
|
|
|
with col2: |
|
source = pd.DataFrame({'Proba': list(total_result.keys()), 'Emotion': list(total_result.values())}) |
|
|
|
fig = alt.Chart(source).mark_bar().encode(x='Emotion',y='Proba',color='Emotion') |
|
st.altair_chart(fig,use_container_width=True) |
|
|
|
|
|
else: |
|
st.subheader("About") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|