Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the merged model
|
5 |
+
model_name = "EmTpro01/merged-gemma" # Replace with your merged model path
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name) # Default device is CPU
|
8 |
+
|
9 |
+
# Streamlit UI
|
10 |
+
st.title("Text Paraphrasing ")
|
11 |
+
st.write("Provide a paragraph, and this AI will paraphrase it for you.")
|
12 |
+
|
13 |
+
# Input paragraph
|
14 |
+
paragraph = st.text_area("Enter a paragraph to paraphrase:", height=200)
|
15 |
+
|
16 |
+
if st.button("Paraphrase"):
|
17 |
+
if paragraph.strip():
|
18 |
+
with st.spinner("Paraphrasing..."):
|
19 |
+
# Prepare the prompt
|
20 |
+
alpaca_prompt = f"Below is a paragraph, paraphrase it.\n### paragraph: {paragraph}\n### paraphrased:"
|
21 |
+
|
22 |
+
# Tokenize input and move to CPU
|
23 |
+
inputs = tokenizer(alpaca_prompt, return_tensors="pt")
|
24 |
+
|
25 |
+
# Generate paraphrased text
|
26 |
+
output = model.generate(**inputs, max_new_tokens=200)
|
27 |
+
paraphrased = tokenizer.decode(output[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
# Extract the paraphrased portion
|
30 |
+
result = paraphrased.split("### paraphrased:")[1].strip()
|
31 |
+
st.text_area("Paraphrased Output:", result, height=200)
|
32 |
+
else:
|
33 |
+
st.warning("Please enter a paragraph to paraphrase.")
|