import streamlit as st from streamlit_chat import message from streamlit_extras.colored_header import colored_header from streamlit_extras.add_vertical_space import add_vertical_space from transformers import AutoTokenizer, AutoModelForCausalLM st.set_page_config(page_title="Einfach.HugChat") # List of models models = ["vicuna-13b", "koala-13b", "oasst-pythia-12b", "RWKV-4-Raven-14B", "alpaca-13b", "chatglm-6b", "llama-13b", "dolly-v2-12b", "stablelm-tuned-alpha-7b", "fastchat-t5-3b", "mpt-7b-chat"] # Sidebar contents with st.sidebar: st.title('EinfachChat') st.markdown(''' ## About This app is a LLM-powered chatbot built using: - [Streamlit](https://streamlit.io/) - [OpenAssistant/oasst-sft-6-llama-30b-xor](https://huggingface.co./OpenAssistant/oasst-sft-6-llama-30b-xor) LLM model 💡 Note: No API key required! ''') model_name = st.selectbox('Choose a model', models) add_vertical_space(5) st.write('Made with ❤️ by EinfachAlex') # Generate empty lists for generated and past. ## generated stores AI generated responses if 'generated' not in st.session_state: st.session_state['generated'] = ["Hallo, wie kann ich dir helfen ?"] ## past stores User's questions if 'past' not in st.session_state: st.session_state['past'] = ['Hi!'] # Layout of input/response containers input_container = st.container() colored_header(label='', description='', color_name='blue-30') response_container = st.container() # User input ## Function for taking user provided prompt as input def get_text(): input_text = st.text_input("You: ", "", key="input") return input_text ## Applying the user input box with input_container: user_input = get_text() # Response output ## Function for taking user prompt as input followed by producing AI generated responses def generate_response(prompt, model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) inputs = tokenizer(prompt, return_tensors='pt') outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0]) return response ## Conditional display of AI generated responses as a function of user provided prompts with response_container: if user_input: response = generate_response(user_input, model_name) st.session_state.past.append(user_input) st.session_state.generated.append(response) if st.session_state['generated']: for i in range(len(st.session_state['generated'])): message(st.session_state['past'][i], is_user=True, key=str(i) + '_user') message(st.session_state["generated"][i], key=str(i))