AllIN / app.py
Alex
Update app.py
21594bd
raw
history blame
2.72 kB
import streamlit as st
from streamlit_chat import message
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from transformers import AutoTokenizer, AutoModelForCausalLM
st.set_page_config(page_title="Einfach.HugChat")
# List of models
models = ["vicuna-13b", "koala-13b", "oasst-pythia-12b", "RWKV-4-Raven-14B",
"alpaca-13b", "chatglm-6b", "llama-13b", "dolly-v2-12b", "stablelm-tuned-alpha-7b",
"fastchat-t5-3b", "mpt-7b-chat"]
# Sidebar contents
with st.sidebar:
st.title('EinfachChat')
st.markdown('''
## About
This app is a LLM-powered chatbot built using:
- [Streamlit](https://streamlit.io/)
- [OpenAssistant/oasst-sft-6-llama-30b-xor](https://huggingface.co./OpenAssistant/oasst-sft-6-llama-30b-xor) LLM model
💡 Note: No API key required!
''')
model_name = st.selectbox('Choose a model', models)
add_vertical_space(5)
st.write('Made with ❤️ by EinfachAlex')
# Generate empty lists for generated and past.
## generated stores AI generated responses
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Hallo, wie kann ich dir helfen ?"]
## past stores User's questions
if 'past' not in st.session_state:
st.session_state['past'] = ['Hi!']
# Layout of input/response containers
input_container = st.container()
colored_header(label='', description='', color_name='blue-30')
response_container = st.container()
# User input
## Function for taking user provided prompt as input
def get_text():
input_text = st.text_input("You: ", "", key="input")
return input_text
## Applying the user input box
with input_container:
user_input = get_text()
# Response output
## Function for taking user prompt as input followed by producing AI generated responses
def generate_response(prompt, model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
inputs = tokenizer(prompt, return_tensors='pt')
outputs = model.generate(**inputs)
response = tokenizer.decode(outputs[0])
return response
## Conditional display of AI generated responses as a function of user provided prompts
with response_container:
if user_input:
response = generate_response(user_input, model_name)
st.session_state.past.append(user_input)
st.session_state.generated.append(response)
if st.session_state['generated']:
for i in range(len(st.session_state['generated'])):
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
message(st.session_state["generated"][i], key=str(i))