File size: 7,064 Bytes
0ab2a52
 
 
 
f50f82b
0ab2a52
1a96163
f50f82b
 
0ab2a52
 
026dae3
 
0ab2a52
 
 
8ecd949
0ab2a52
 
 
 
45f6849
0ab2a52
 
026dae3
 
1a96163
87a8fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
026dae3
 
 
 
 
 
1a96163
670498a
026dae3
1a96163
 
0ab2a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51dcd32
0ab2a52
 
5a102d8
0ab2a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65aa68a
 
0ab2a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51dcd32
0ab2a52
 
 
 
 
 
 
4ef5dcd
0ab2a52
 
 
 
 
 
 
 
 
b35d68a
0ab2a52
 
 
 
 
dda1854
0ab2a52
 
 
 
 
 
dda1854
0ab2a52
 
 
 
 
dda1854
 
 
 
 
 
0ab2a52
 
 
 
 
 
 
a735cba
0ab2a52
a735cba
0ab2a52
 
 
 
 
 
eeb6c3c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import gradio as gr
import librosa
import numpy as np
import torch

import string
import httpx
import inflect
import re

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
import requests
from requests.exceptions import Timeout

checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained("Edmon02/speecht5_finetuned_hy")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")


speaker_embeddings = {
    "BDL": "cmu_us_bdl_arctic-wav-arctic_a0009.npy",
}

def translate_text(text):
    trans_text = ''

    # Add a timeout of 5 seconds (adjust as needed)
    response = requests.get(
        "https://translate.googleapis.com/translate_a/single",
        params={
            'client': 'gtx',
            'sl': 'auto',
            'tl': 'hy',
            'dt': 't',
            'q': text,
        },
        timeout=50,
    )
    response.raise_for_status()  # Raise an HTTPError for bad responses

    # Extract the translated text from the response
    translation = response.json()[0][0][0]

    trans_text += translation

    return trans_text

def convert_number_to_words(number: float) -> str:
    p = inflect.engine()
    words = p.number_to_words(number)

    # Use asyncio.run even if an event loop is already running (nested asyncio)
    translated_words = translate_text(words)

    return translated_words

def process_text(text: str) -> str:
    # Convert numbers to words
    words = []
    text = str(text) if str(text) else ''
    for word in text.split():
        # Check if the word is a number
        if re.search(r'\d', word):
            words.append(convert_number_to_words(int(''.join(filter(str.isdigit, word)))))
        else:
            words.append(word)

    # Join the words back into a sentence
    processed_text = ' '.join(words)
    return processed_text

replacements = [
    ("՚", "?"),
    ('՛', ""),
    ('՝', ""),
    ("«", "\""),
    ("»", "\""),
    ("՞", "?"),
    ("ա", "a"),
    ("բ", "b"),
    ("գ", "g"),
    ("դ", "d"),
    ("զ", "z"),
    ("է", "e"),
    ("ը", "e'"),
    ("թ",   "t'"),
    ("ժ",	"jh"),
    ("ի",	"i"),
    ("լ",	"l"),
    ("խ",	"kh"),
    ("ծ",	"ts"),
    ("կ",	"k"),
    ("հ",	"h"),
    ("ձ",	"dz"),
    ("ղ",	"gh"),
    ("ճ",	"ch"),
    ("մ",	"m"),
    ("յ",	"y"),
    ("ն",	"n"),
    ("շ",	"sh"),
    ("չ",	"ch'"),
    ("պ",	"p"),
    ("ջ",	"j"),
    ("ռ",	"r"),
    ("ս",	"s"),
    ("վ",	"v"),
    ("տ",	"t"),
    ("ր",	"r"),
    ("ց",	"ts'"),
    ("ւ",	""),
    ("փ",	"p'"),
    ("ք",	"k'"),
    ("և",	"yev"),
    ("օ",	"o"),
    ("ֆ",	"f"),
    ('։', "."),
    ('–', "-"),
    ('†', "e'"),
]


def cleanup_text(text):
    
    translator = str.maketrans("", "", string.punctuation)

    text = text.translate(translator).lower()
    text = text.lower()
    
    normalized_text = text

    normalized_text = normalized_text.replace("ու", "u")
    normalized_text = normalized_text.replace("եւ", "yev")
    normalized_text = normalized_text.replace("եվ", "yev")

    # Handle 'ո' at the beginning of a word
    normalized_text = normalized_text.replace(" ո", " vo")

    # Handle 'ո' in the middle of a word
    normalized_text = normalized_text.replace("ո", "o")

    # Handle 'ե' at the beginning of a word
    normalized_text = normalized_text.replace(" ե", " ye")

    # Handle 'ե' in the middle of a word
    normalized_text = normalized_text.replace("ե", "e")

    # Apply other replacements
    for src, dst in replacements:
        normalized_text = normalized_text.replace(src, dst)

    inputs = normalized_text
    return inputs

def predict(text, speaker):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))

    text = process_text(text)
    
    text = cleanup_text(text)

    inputs = processor(text=text, return_tensors="pt")

    # limit input length
    input_ids = inputs["input_ids"]
    input_ids = input_ids[..., :model.config.max_text_positions]

    speaker_embedding = np.load(speaker_embeddings[speaker[:3]]).astype(np.float32)

    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (16000, speech)


title = "SpeechT5_hy: Speech Synthesis"

description = """
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.

SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the <b>text-to-speech</b> (TTS) checkpoint for the Armenian language.

See also the <a href="https://huggingface.co./spaces/Matthijs/speecht5-asr-demo">speech recognition (ASR) demo</a>
and the <a href="https://huggingface.co./spaces/Matthijs/speecht5-vc-demo">voice conversion demo</a>.

Refer to <a href="https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ">this Colab notebook</a> to learn how to fine-tune the SpeechT5 TTS model on your own dataset or language.

<b>How to use:</b> Enter some Armenian text and choose a speaker. The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the
HiFi-GAN vocoder. Because the model always applies random dropout, each attempt will give slightly different results.
The <em>Surprise Me!</em> option creates a completely randomized speaker.
"""

examples = [
    ["Մեր ճակատագիրը աստղերի մեջ չէ, այլ մեր մեջ:", "BDL (male)"],
    ["Հոկտեմբերին ութոտնուկն ու Օլիվերը գնացին օպերա։", "BDL (male)],
    ["Նա ծովի ափին ծովախեցգետիններ է վաճառում: Ես տեսա, որ խոհանոցում հավ է ուտում մի ձագ:", "BDL (male)],
    ["Կտրուկ խիզախ բրիգադները թափահարում էին լայն, պայծառ շեղբեր, կոպիտ ավտոբուսներ և մռութներ՝ վատ հավասարակշռելով դրանք:", "BDL (male)],
    ["Դարչինի հոմանիշը դարչինի հոմանիշն է:", "BDL (male)"],
    ["Ինչքա՞ն փայտ կթափի փայտափայտը, եթե փայտափայտը կարողանար փայտ ծակել: Նա կխփեր, կաներ, այնքան, որքան կարող էր, և այնքան փայտ կխփեր, որքան փայտափայտը, եթե փայտափայտը կարողանար փայտ ծակել:", "BDL (male)],
]

gr.Interface(
    fn=predict,
    inputs=[
        gr.Text(label="Input Text"),
        gr.Radio(label="Speaker", choices=[
            "BDL (female)"
        ],
        value="BDL (female)"),
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy"),
    ],
    title=title,
    description=description,
).launch()