# %% # -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ from numpy import arange import xarray as xr import highspy from linopy import Model, EQUAL import pandas as pd import plotly.express as px import streamlit as st import sourced as src import numpy as np ## Setting write_pickle_from_standard_excel = True st.set_page_config(layout="wide") # you can create columns to better manage the flow of your page # this command makes 3 columns of equal width col1, col2, col3, col4 = st.columns(4) col1.header("Data Input") col4.header("Download Results") # Color dictionary for figures color_dict = {'Biomasse': 'lightgreen', 'Braunkohle': 'red', 'Erdgas': 'grey', 'Steinkohle': 'darkgrey', 'Erdöl': 'brown', 'Laufwasser': 'aquamarine', 'Kernenergie': 'orange', 'PV': 'yellow', 'WindOff': 'darkblue', 'WindOn': 'blue'} # %% with col1: with open('Input_Jahr_2021.xlsx', 'rb') as f: st.download_button('Download Excel Vorlage', f, file_name='Input_Jahr_2021.xlsx') # Defaults to 'application/octet-stream' #url_excel = r'Input_Jahr_2021.xlsx' url_excel = st.file_uploader(label = 'Excel Datei hochladen') if url_excel == None: if write_pickle_from_standard_excel: url_excel = r'Input_Jahr_2021.xlsx' sets_dict, params_dict= src.load_data_from_excel(url_excel, write_to_pickle_flag= True) sets_dict, params_dict = src.load_from_pickle() with col4: st.write('Lauf mit Standarddaten') else: sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = False) with col4: st.write('Lauf mit Nutzerdaten') # # %% def timstep_aggregate(time_steps_aggregate, xr ): return xr.rolling( t = time_steps_aggregate).mean().sel(t = t[0::time_steps_aggregate]) #s_t_r_iRes = timstep_aggregate(6,s_t_r_iRes) # %% #sets_dict, params_dict= src.load_data_from_excel(url_excel,write_to_pickle_flag=True) # %% #sets_dict, params_dict= load_data_from_excel(url_excel, load_from_pickle_flag = False) # Unpack sets_dict into the workspace t = sets_dict['t'] t_original = sets_dict['t'] i = sets_dict['i'] # iSto = sets_dict['iSto'] iConv = sets_dict['iConv'] # iPtG = sets_dict['iPtG'] iRes = sets_dict['iRes'] # iHyRes = sets_dict['iHyRes'] # Unpack params_dict into the workspace # l_co2 = params_dict['l_co2'] l_co2 = 90 p_co2 = params_dict['p_co2'] eff_i = params_dict['eff_i'] life_i = params_dict['life_i'] c_fuel_i = params_dict['c_fuel_i'] c_other_i = params_dict['c_other_i'] c_inv_i = params_dict['c_inv_i'] co2_factor_i = params_dict['co2_factor_i'] c_var_i = params_dict['c_var_i'] K_0_i = params_dict['K_0_i'] # e2p_iSto = params_dict['e2p_iSto'] # Sliders and input boxes for parameters with col2: # Slider for CO2 limit [mio. t] l_co2 = st.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label="CO2 Limit [Mio. t]", step=10) # # Slider for H2 price / usevalue [€/MWH_th] # price_h2 = st.slider(value=100, min_value=0, max_value=300, label="Wasserstoffpreis [€/MWh]", step=10) for i_idx in c_fuel_i.get_index('i'): if i_idx in ['Braunkohle']: c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Preis [€/MWh]' , step=10) dt = st.number_input(label="Zeitliche Auflösung [h]", min_value=1, max_value=len(t), value=6, help="Geben Sie nur ganze Zahlen zwischen 1 und 8760 (oder 8784 für Schaltjahre) ein.") with col3: # Slider for CO2 limit [mio. t] for i_idx in c_fuel_i.get_index('i'): if i_idx in ['Steinkohle', 'Erdöl','Erdgas']: c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Preis [€/MWh]' , step=10) technologies_invest = st.multiselect(label='Technologien für Investitionen', options=i, default=['Braunkohle','Erdgas','Steinkohle','Erdöl','PV','WindOff','WindOn','Laufwasser','Kernenergie','Biomasse']) technologies_no_invest = [x for x in i if x not in technologies_invest] # Aggregate time series D_t = timstep_aggregate(dt,params_dict['D_t']) # D_t sorted descending D_t_sorted = D_t.sortby(D_t, ascending = False) s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes']) # h_t = timstep_aggregate(dt,params_dict['h_t']) t = D_t.get_index('t') partial_year_factor = (8760/len(t))/dt #time_steps_aggregate = 6 #= xr_profiles.rolling( time_step = time_steps_aggregate).mean().sel(time_step = time[0::time_steps_aggregate]) price_co2 = 0 # Aggregate time series #D_t = timstep_aggregate(dt,params_dict['D_t']) #s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes']) #h_t = timstep_aggregate(dt,params_dict['h_t']) #t = D_t.get_index('t') #partial_year_factor = (8760/len(t))/dt #technologies_no_invest = st.multiselect(label='Technology invest', options=i) #technologies_no_invest = ['Electrolyzer','Biomass','RoR','Hydro Water Reservoir','Nuclear'] # %% ### Variables m = Model() C_tot = m.add_variables(name = 'C_tot') # Total costs C_op = m.add_variables(name = 'C_op', lower = 0) # Operational costs C_inv = m.add_variables(name = 'C_inv', lower = 0) # Investment costs K = m.add_variables(coords = [i], name = 'K', lower = 0) # Endogenous capacity y = m.add_variables(coords = [t,i], name = 'y', lower = 0) # Electricity production --> für Elektrolyseure ausschließen # y_ch = m.add_variables(coords = [t,i], name = 'y_ch', lower = 0) # Electricity consumption --> für alles außer Elektrolyseure und Speicher ausschließen # l = m.add_variables(coords = [t,i], name = 'l', lower = 0) # Storage filling level w = m.add_variables(coords = [t], name = 'w', lower = 0) y_curt = m.add_variables(coords = [t,i], name = 'y_curt', lower = 0) # RES curtailment # y_h2 = m.add_variables(coords = [t,i], name = 'y_h2', lower = 0) ## Objective function C_tot = C_op + C_inv m.add_objective(C_tot) ## Costs terms for objective function # Operational costs (minus revenue for produced hydrogen) # C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum() * dt - (y_h2.sel(i = iPtG) * price_h2).sum() * dt == C_op, name = 'C_op_sum') C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum() * dt == C_op, name = 'C_op_sum') # Investment costs C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum') ## Load serving # loadserve_t = m.add_constraints((((y ).sum(dims = 'i') - y_ch.sum(dims = 'i')) * dt == D_t.sel(t = t) * dt), name = 'load') loadserve_t = m.add_constraints((((y ).sum(dims = 'i') ) * dt == D_t.sel(t = t) * dt), name = 'load') ## Maximum capacity limit maxcap_i_t = m.add_constraints((y - K <= K_0_i), name = 'max_cap') ## Maximum capacity limit maxcap_invest_i = m.add_constraints((K.sel(i = technologies_no_invest) <= 0), name = 'max_cap_invest') ## Prevent power production by PtG # no_power_prod_iPtG_t = m.add_constraints((y.sel(i = iPtG) <= 0), name = 'prevent_ptg_prod') ## Maximum storage charging and discharging # maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) - y_ch.sel(i = iSto) - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name = 'max_cha') ## Maximum electrolyzer capacity # ptg_prod_iPtG_t = m.add_constraints((y_ch.sel(i = iPtG) - K.sel(i = iPtG) <= K_0_i.sel(i = iPtG)), name = 'max_cha_ptg') ## PtG H2 production # h2_prod_iPtG_t = m.add_constraints(y_ch.sel(i = iPtG) * eff_i.sel(i = iPtG) == y_h2.sel(i = iPtG), name = 'ptg_h2_prod') ## Infeed of renewables infeed_iRes_t = m.add_constraints((y.sel(i = iRes) - s_t_r_iRes.sel(i = iRes).sel(t = t) * K.sel(i = iRes) + y_curt.sel(i = iRes) == s_t_r_iRes.sel(i = iRes).sel(t = t) * K_0_i.sel(i = iRes)), name = 'infeed') ## Maximum filling level restriction storage power plant # maxcapsto_iSto_t = m.add_constraints((l.sel(i = iSto) - K.sel(i = iSto) * e2p_iSto.sel(i = iSto) <= K_0_i.sel(i = iSto) * e2p_iSto.sel(i = iSto)), name = 'max_sto_filling') ## Filling level restriction hydro reservoir # filling_iHydro_t = m.add_constraints(l.sel(i = iHyRes) - l.sel(i = iHyRes).roll(t = -1) + y.sel(i = iHyRes) * dt == h_t.sel(t = t) * dt, name = 'filling_level_hydro') ## Filling level restriction other storages # filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) + (y.sel(i = iSto) / eff_i.sel(i = iSto)) * dt - y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level') ## CO2 limit CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2 * 1_000_000 , name = 'CO2_limit') ## set run-of-river power plants capacity limit to 5 GW RoR_cap = m.add_constraints(K.sel(i = 'Laufwasser') <= 5000, name = 'RoR_cap') Biomass_cap = m.add_constraints(K.sel(i = 'Biomasse') <= 9000, name = 'Biomass_cap') # %% m.solve(solver_name = 'highs') st.markdown("---") colb1, colb2 = st.columns(2) # %% #c_var_i.to_dataframe(name='VarCosts') # %% # Installed Cap # Assuming df_excel has columns 'All' and 'Capacities' fig = px.bar((m.solution['K']+K_0_i).to_dataframe(name='K').reset_index(), \ y='i', x='K', orientation='h', title='Installierte Kapazitäten insgesamt [MW]', color='i') #fig # %% total_costs = float(m.solution['C_inv'].values) + float(m.solution['C_op'].values) total_costs_rounded = round(total_costs/1e9, 2) df_total_costs = pd.DataFrame({'Total costs':[total_costs]}) with colb1: st.write('Gesamtkosten: ' + str(total_costs_rounded) + ' Mrd. €') # %% #df_Co2_price = pd.DataFrame({'CO2_Price: ':[float(m.constraints['CO2_limit'].dual.values) * (-1)]}) CO2_price = float(m.constraints['CO2_limit'].dual.values) * (-1) CO2_price_rounded = round(CO2_price, 2) df_CO2_price = pd.DataFrame({'CO2 price':[CO2_price]}) with colb2: #st.write(str(df_Co2_price)) st.write('CO2 Preis: ' + str(CO2_price_rounded) + ' €/t') # %% df_new_capacities = m.solution['K'].to_dataframe().reset_index() fig = px.bar(m.solution['K'].to_dataframe().reset_index(), y='i', x='K', orientation='h', title='Neu installierte Kapazitäten [MW]', color='i', color_discrete_map=color_dict) with colb1: fig # %% #add pie chart which shows new capacities #round number of new capacities df_new_capacities_rounded = m.solution['K'].round(0).to_dataframe() #drop all technologies with K<= 0 df_new_capacities_rounded = df_new_capacities_rounded[df_new_capacities_rounded["K"] > 0].reset_index() total_k_sum = df_new_capacities_rounded["K"].sum() #df_new_capacities_rounded["percentage"] = df_new_capacities_rounded["K"].apply(lambda x: (x/total_k_sum)*100).abs().round(2) fig = px.pie(df_new_capacities_rounded, names='i', values='K', title='Neu installierte Kapazitäten [MW] als Kuchendiagramm', color='i', color_discrete_map=color_dict) with colb1: fig # %% i_with_capacity = m.solution['K'].where( m.solution['K'] > 0).dropna(dim = 'i').get_index('i') df_production = m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index() fig = px.area(m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t', title='Stromproduktion Lastgang [MW]', color='i', color_discrete_map=color_dict) fig.update_traces(line=dict(width=0)) fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) with colb2: fig # %% #Add pie chart of total production per technology type in GWh(divide by 1000) df_production_sum = (df_production.groupby('i')['y'].sum() * dt / 1000 ).round(0).sort_values(ascending=False).reset_index() fig = px.pie(df_production_sum, names="i", values='y', title='Gesamtproduktion [GWh] als Kuchendiagramm', color='i', color_discrete_map=color_dict) with colb2: fig # %% df_price = m.constraints['load'].dual.to_dataframe().reset_index() fig = px.line(df_price, y='dual', x='t', title='Strompreis [€/MWh]', range_y=[0,350]) with colb1: fig # %% # df_sorted_price = df_price["dual"].repeat(dt).sort_values(ascending=False).reset_index(drop=True)/int(dt) df_sorted_price = df_price["dual"].sort_values(ascending=False).reset_index(drop=True) fig = px.line(y=df_sorted_price, x=df_sorted_price.index, title='Preisdauerlinie [€/MWh]', labels={"x": "Stunden im Jahr"},range_y=[0,350]) with colb1: fig # %% df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index() df_contr_marg['dual'] = df_contr_marg['dual'] / dt * (-1) # %% fig = px.line(df_contr_marg, y='dual', x='t',title='Deckungsbeitrag [€]', color='i', range_y=[0,350], color_discrete_map=color_dict) with colb2: fig # %% # curtailment df_curtailment = m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index() fig = px.area(m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index(), y='y_curt', x='t', title='Abregelung [MWh]', color='i', color_discrete_map=color_dict) fig.update_traces(line=dict(width=0)) fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) with colb1: fig # %% df_production_pivot = df_production.pivot(index='t', columns='i', values='y') # sort columns according to i_with_capacity df_production_pivot = df_production_pivot[i_with_capacity] co2_factor_i_with_capacity = co2_factor_i.sel(i = i_with_capacity) # colour_dict = {i: color_dict[i] for i in i_with_capacity} color_dict_with_capacity = {i: color_dict[i] for i in i_with_capacity} # multiply df_production with co2 factor df_production_emissions = df_production_pivot * co2_factor_i_with_capacity # unpivot df_production_emissions, sorting by datetime df_production_emissions_unpivot = df_production_emissions.reset_index().melt(id_vars='t', var_name='i', value_name='y') df_production_emissions_unpivot = df_production_emissions_unpivot.sort_values(by='t') # sum up y column in total df_production_emissions_total = df_production_emissions_unpivot['y'].sum() df_production_emissions_sorted = df_production_emissions_unpivot.sort_values(by='y', ascending=True) # sum up cumulated emissions df_production_emissions_sorted['cumsum'] = df_production_emissions_sorted['y'].cumsum() # generate area plot of df_production_emissions_unpivot over t fig = px.area(df_production_emissions_unpivot, y='y', x='t', title='Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity) fig.update_traces(line=dict(width=0)) fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) # fig = px.area(df_production_emissions_unpivot.sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t', title='Stromproduktion Lastgang [MW]', color='i', color_discrete_map=color_dict) # fig.update_traces(line=dict(width=0)) # fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) with colb2: fig # %% # generate area plot of df_production_emissions_sorted['cumsum] over t x_emissions = np.arange(1, df_production_emissions_sorted['t'].size + 1) fig = px.area(df_production_emissions_sorted, y='cumsum', x=x_emissions, title='Kumulierte Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity) fig.update_traces(line=dict(width=0)) fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) with colb2: fig # %% # df_charging = m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index() # fig = px.area(m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index(), y='y_ch', x='t', title='Speicherbeladung [MWh]', color='i', color_discrete_map=color_dict) # fig.update_traces(line=dict(width=0)) # fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) # with colb2: # fig # %% # define vector x with size (1,size D_t_sorted) x = np.arange(1, D_t_sorted.size + 1) fig = px.line(y=D_t_sorted, x=x, title='Lastdauerlinie [€/MWh]', labels={"x": "Stunden im Jahr"}) with colb2: fig # # %% # df_h2_prod = m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index() # fig = px.area(m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index(), y='y_h2', x='t', title='Produktion Wasserstoff [MWh_th]', color='i', color_discrete_map=color_dict) # fig.update_traces(line=dict(width=0)) # fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) # with colb2: # fig # %% ((m.solution['y'] / eff_i) * co2_factor_i * dt).sum() # %% import pandas as pd from io import BytesIO #from pyxlsb import open_workbook as open_xlsb import streamlit as st import xlsxwriter # %% output = BytesIO() # ## def disaggregate_df(df): if not "t" in list(df.columns): return df #df_repeated = df.iloc[idx_repeat,:].reset_index(drop = True).drop('t', axis = 1) df_t_all = pd.DataFrame({"t_all": t_original.to_series(), 't': t.repeat(dt)}).reset_index(drop=True) ## %% df_output = df.merge(df_t_all,on = 't').drop('t',axis = 1).rename({'t_all':'t'}, axis = 1) # last column to first column cols = list(df_output.columns) cols = [cols[-1]] + cols[:-1] df_output = df_output[cols] return df_output.sort_values('t') # Create a Pandas Excel writer using XlsxWriter as the engine with pd.ExcelWriter(output, engine='xlsxwriter') as writer: # Write each DataFrame to a different sheet disaggregate_df(df_total_costs).to_excel(writer, sheet_name='Gesamtkosten', index=False) disaggregate_df(df_CO2_price).to_excel(writer, sheet_name='CO2 Preis', index=False) disaggregate_df(df_price).to_excel(writer, sheet_name='Preise', index=False) disaggregate_df(df_contr_marg).to_excel(writer, sheet_name='Deckungsbeiträge', index=False) disaggregate_df(df_new_capacities).to_excel(writer, sheet_name='Kapazitäten', index=False) disaggregate_df(df_production).to_excel(writer, sheet_name='Produktion', index=False) # disaggregate_df(df_charging).to_excel(writer, sheet_name='Ladevorgänge', index=False) disaggregate_df(D_t.to_dataframe().reset_index()).to_excel(writer, sheet_name='Nachfrage', index=False) disaggregate_df(df_curtailment).to_excel(writer, sheet_name='Abregelung', index=False) # disaggregate_df(df_h2_prod).to_excel(writer, sheet_name='H2 produktion', index=False) with col4: st.download_button( label="Download Excel Arbeitsmappe Ergebnisse", data=output.getvalue(), file_name="Arbeitsmappe_Ergebnisse.xlsx", mime="application/vnd.ms-excel" ) # %%