Spaces:
Sleeping
Sleeping
File size: 12,438 Bytes
42d4eef f2f8a97 42d4eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import streamlit as st
import requests
import time
from streamlit_option_menu import option_menu
import streamlit.components.v1 as components
import os
TOKEN_API = os.environ.get("IATOKEN")
#TOKEN_API = "Bearer xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
#changement du logo et du titre de mon application en anglais
st.set_page_config(page_title="NLP Outro", page_icon=":brain:", layout="centered", menu_items=None)
# Créer trois colonnes de largeur égale
col1, col2, col3 = st.columns(3)
# Laisser la première et la troisième colonne vides
with col1:
st.write("")
# Afficher le logo dans la deuxième colonne
with col2:
st.sidebar.image("img/logo2.png", use_column_width=None)
with col3:
st.write("")
with st.sidebar:
selected = option_menu(
menu_title="Application NLP", # required
options=["Accueil", "Chatbot", "Traduction", "Résumer"], # required
icons=["house", "chat-dots", "translate","journal-text"], # optional
menu_icon="cast", # optional
default_index=0 # optional
)
if selected == "Accueil":
st.title(f"{selected}")
# Display home page with app description and logo
st.header('Bienvenue sur mon application de nlp qui présente trois principales fonctionalités : le chatbot, la traduction et le résumé de texte.')
st.image('img/image4.jpg', )
#st.title('Bienvenue sur l\'application de classification d\'images de radiographies pulmonaires')
#st.markdown("<h1 style='text-align: center;'>Bienvenue sur l'application de classification d'images de radiographies pulmonaires</h1>", unsafe_allow_html=True)
#st.markdown("<h5 style='text-align: justify;'><b>La traduction</b> permet de convertir du texte entre six langues : l’anglais, l’espagnole, le français, le chinois et l’itqlien et le russe. Elle utilise les modèles de Helsinki-NLP, qui sont des modèles de traduction automatique neuronale basés sur le Transformer. Ces modèles sont rapides, précis et capables de gérer des langues morphologiquement riches.</h5>", unsafe_allow_html=True)
# st.markdown("<h5 style='text-align: justify;'><b>Le résumé</b> permet de condenser un texte long en un texte court qui en conserve les informations essentielles. Il utilise le modèle facebook/bart-large-cnn , qui est une variante du modèle T56 adaptée et affinée pour la tâche de résumé de texte. Ce modèle est entraîné sur un ensemble diversifié de documents et de résumés humains, ce qui lui permet de générer des résumés concis et cohérents.</h5>", unsafe_allow_html=True)
# st.markdown("<h5 style='text-align: justify;'><b>Le chatbot</b> permet de dialoguer avec l’application en utilisant un langage naturel. Il utilise le modèle /tiiuae/falcon-7b-instruct, qui est un modèle de génération de texte causal basé sur Falcon-7B et affiné sur un mélange de données de chat et d’instruction. Ce modèle est capable de répondre à des requêtes variées, de suivre des instructions et de créer du contenu imaginatif.</h5>", unsafe_allow_html=True)
st.markdown("<h5 style='text-align: justify;'>Mon application utilise l’Inference API de Hugging Face pour accéder aux modèles et les exécuter via des requêtes HTTP simples. L’Inference API est un service gratuit et rapide qui permet de tester et d’évaluer plus de 150 000 modèles de machine learning accessibles au public, ou vos propres modèles privés, sur l’infrastructure partagée de Hugging Face.</h5>", unsafe_allow_html=True)
st.markdown("<h5 style='text-align: justify;'>Mon application est donc un outil puissant et innovant qui exploite les dernières avancées de l’intelligence artificielle pour offrir des services de traduction, de résumé et de chatbot de haute qualité.</h5>", unsafe_allow_html=True)
# components.html(
# """
# <div style="position: fixed; bottom: 0; left: 0; right: 0; text-align: center; font-size: 15px; color: gray;">
# Tous droits réservés © Janvier 2024
# </div>
# """,
# height=50
# )
if selected == "Traduction":
# CODE TRANSLATE
st.title(f"{selected}")
st.image('img/image1.jpg',)
st.markdown("veillez saisir vos **textes pour la traduction en selectionant une langue.** ")
headers = {"Authorization": TOKEN_API}
# Choose the translation language from Hugging Face
translation_languages = {
"French to English": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-fr-en",
"English to French": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-en-fr",
"French to Spanish": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-fr-es",
"Spanish to French": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-es-fr",
"French to Italian": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-fr-it",
"Italian to French": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-it-fr",
"French to Russian": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-fr-ru",
"Russian to French": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-ru-fr",
"English to Chinese": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-en-zh",
"Chinese to English": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-zh-en",
# Add more language pairs as needed
}
selected_translation = st.selectbox("", list(translation_languages.keys()))
# Load the translation pipeline
API_TRANSLATE=translation_languages[selected_translation]
# User input for translation
col4, col5 = st.columns(2)
translate_input = col4.text_area("", height=200, placeholder='Entrer le texte à traduire:')
#translate_input = st.text_area("Entrer le texte à traduire:", "")
# Display loading indicator
col6, col7 = st.columns(2)
if col6.button("Traduire"):
with st.spinner("traduction..."):
# Simulate translation delay for demonstration
time.sleep(2)
if translate_input:
# Perform translation
def main_translate(payload):
response = requests.post(API_TRANSLATE, headers=headers, json=payload)
return response.json()
output_translate = main_translate({
"inputs": translate_input
})
if not output_translate[0]["translation_text"]:
error_message = output_translate[0]["error"]
st.error(f"Le texte n'a pas pu être traduit: {error_message}")
else:
translated_text = output_translate[0]["translation_text"]
col5.markdown('''<br/> <p style='text-align:left;font-size:16px;'>'''+ translated_text +'''</p>''', unsafe_allow_html=True)
#st.success(f"Le texte tratuit: {translated_text}")
#st.write("**TRADUCTION** is : {}".format(output[0]["translation_text"]))
else:
st.warning("Veuillez saisir le texte à traduire.")
# Clear button to reset input and result
if col7.button("Nettoyer"):
translate_input = ""
col5.success("Le champ est nettoyé.")
st.empty() # Clear previous results if any
#END FOR TRANSLATE CODE
if selected == "Résumer":
#CODE SUMMARIZE
st.title(f"{selected}")
st.image('img/image3.jpg',)
st.markdown("ici vous faites le **Résumer** de vos **texte**.")
headers = {"Authorization": TOKEN_API}
# Load the
API_SUMMARY = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
# User input for translation
summary_input = st.text_area("Entrer le texte à Résumer:", "")
if st.button("Résumer"):
with st.spinner("Résume..."):
# Simulate translation delay for demonstration
time.sleep(2)
if summary_input:
def main1(payload):
response = requests.post(API_SUMMARY, headers=headers, json=payload)
return response.json()
output_summary = main1({"inputs": summary_input})
summary_text = output_summary[0]["summary_text"]
st.success(f"Résumé: {summary_text}")
else:
st.warning("Veuillez saisir le texte à résumer.")
# Clear button to reset input and result
if st.button("Nettoyer"):
summary_input = ""
st.success("Le champ est nettoyé.")
st.empty() # Clear previous results if any
#END CODE SUMMARIZE
if selected == "Chatbot":
# CODE TRANSLATE
st.title(f"{selected}")
st.image('img/image3.jpg', caption='Veillez chatter ici en me posant vos questions')
#st.markdown("Cette partie vous offre la possibilité de me poser vos **questions**.")
headers = {"Authorization": TOKEN_API}
# Choose the translation language from Hugging Face
translation_models = {
"English": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-en-fr",
"French": "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-fr-en",
}
selected_translation = st.selectbox("Sélectionner une langue", list(translation_models.keys()))
# Load the
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct"
# User input for translation
user_input = st.text_area("veillez saisir une question :", "")
if (selected_translation=="French"):
API_URL_1 = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-fr-en"
API_URL_2 = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-en-fr"
# Display loading indicator
if st.button("Recherche"):
with st.spinner("Rechercher..."):
# Simulate translation delay for demonstration
time.sleep(2)
if user_input:
def main(payload):
response = requests.post(API_URL_1, headers=headers, json=payload)
return response.json()
output = main({"inputs": user_input})
text2 = output[0]["translation_text"]
if text2:
def main1(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = main1({"inputs": text2})
text3 = output[0]["generated_text"]
if text3:
def main(payload):
response = requests.post(API_URL_2, headers=headers, json=payload)
return response.json()
output = main({"inputs": text3})
generated_text = output[0]["translation_text"]
st.success(f"Réponse: {generated_text}")
else:
st.warning("Veuillez saisir une question.")
else :
# Display loading indicator
if st.button("Research"):
with st.spinner("Researching..."):
# Simulate translation delay for demonstration
time.sleep(2)
if user_input:
# Perform translation
def main(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = main({
"inputs": user_input
})
generated_text = output[0]["generated_text"]
st.success(f"Response: {generated_text}")
else:
st.warning("Please enter a question.")
# Clear button to reset input and result
if st.button("Nettoyer"):
user_input = ""
st.success("Le champ est nettoyé.")
st.empty() # Clear previous results if any
# END CODE TRANSLATE |