File size: 16,063 Bytes
615e9f1
 
 
 
 
 
 
b76c717
615e9f1
ca71e96
615e9f1
 
ca71e96
615e9f1
b76c717
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
5950696
615e9f1
 
 
 
 
 
 
 
 
 
 
 
ca71e96
615e9f1
 
 
 
 
 
 
 
 
 
 
5950696
615e9f1
 
 
 
 
 
 
 
 
64b088f
 
 
615e9f1
64b088f
 
 
 
 
 
615e9f1
64b088f
 
 
 
 
 
 
 
 
 
615e9f1
64b088f
 
 
2da5c78
64b088f
615e9f1
64b088f
615e9f1
64b088f
 
 
42199f1
64b088f
 
615e9f1
64b088f
615e9f1
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
615e9f1
 
 
 
 
2da5c78
ca37b38
615e9f1
64b088f
615e9f1
64b088f
2da5c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
2da5c78
64b088f
 
 
 
2da5c78
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import copy
import numpy as np
import time
import torch
import torchvision.transforms.functional as F
import matplotlib.pyplot as plt

from modules.eval import main_evaluation
from torch.optim import SGD, AdamW
from torchvision.models.detection import keypointrcnn_resnet50_fpn
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from tqdm import tqdm
from modules.utils import write_results


def get_arrow_model(num_classes, num_keypoints=2):
    """
    Configures and returns a modified Keypoint R-CNN model based on ResNet-50 with FPN, adapted for a custom number of classes and keypoints.

    Parameters:
    - num_classes (int): Number of classes for the model to detect, excluding the background class.
    - num_keypoints (int): Number of keypoints to predict for each detected object.

    Returns:
    - model (torch.nn.Module): The modified Keypoint R-CNN model.
    """
    # Load a model pre-trained on COCO, initialized without pre-trained weights
    model = keypointrcnn_resnet50_fpn(weights=None)

    # Get the number of input features for the classifier in the box predictor.
    in_features = model.roi_heads.box_predictor.cls_score.in_features

    # Replace the box predictor in the ROI heads with a new one, tailored to the number of classes.
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

    # Replace the keypoint predictor in the ROI heads with a new one, specifically designed for the desired number of keypoints.
    model.roi_heads.keypoint_predictor = KeypointRCNNPredictor(512, num_keypoints)

    return model


def get_faster_rcnn_model(num_classes):
    """
    Configures and returns a modified Faster R-CNN model based on ResNet-50 with FPN, adapted for a custom number of classes.

    Parameters:
    - num_classes (int): Number of classes for the model to detect, including the background class.

    Returns:
    - model (torch.nn.Module): The modified Faster R-CNN model.
    """
    # Load a pre-trained Faster R-CNN model
    model = fasterrcnn_resnet50_fpn(weights=None)

    # Get the number of input features for the classifier in the box predictor
    in_features = model.roi_heads.box_predictor.cls_score.in_features

    # Replace the box predictor with a new one, tailored to the number of classes (num_classes includes the background)
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

    return model

def prepare_model(dict, opti, learning_rate=0.0003, model_to_load=None, model_type='object'):
    """
    Prepares the model and optimizer for training.

    Parameters:
    - dict (dict): Dictionary of classes.
    - opti (str): Optimizer type ('SGD' or 'Adam').
    - learning_rate (float): Learning rate for the optimizer.
    - model_to_load (str, optional): Name of the model to load.
    - model_type (str): Type of model to prepare ('object' or 'arrow').

    Returns:
    - model (torch.nn.Module): The prepared model.
    - optimizer (torch.optim.Optimizer): The configured optimizer.
    - device (torch.device): The device (CPU or CUDA) on which to perform training.
    """
    # Adjusted to pass the class_dict directly
    if model_type == 'object':
        model = get_faster_rcnn_model(len(dict))
    elif model_type == 'arrow':
        model = get_arrow_model(len(dict), 2)

    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    # Load the model weights
    if model_to_load:
        model.load_state_dict(torch.load(model_to_load + '.pth', map_location=device))
        print(f"Model '{model_to_load}'  loaded")

    model.to(device)

    if opti == 'SGD':
        optimizer = SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.0001)
    elif opti == 'Adam':
        optimizer = AdamW(model.parameters(), lr=learning_rate, weight_decay=0.001, eps=1e-08, betas=(0.9, 0.999))
    else:
        print('Optimizer not found')

    return model, optimizer, device


def evaluate_loss(model, data_loader, device, loss_config=None, print_losses=False):
    """
    Evaluate the loss of the model on a validation dataset.

    Parameters:
    - model (torch.nn.Module): The model to evaluate.
    - data_loader (torch.utils.data.DataLoader): DataLoader for the validation dataset.
    - device (torch.device): Device to perform evaluation on.
    - loss_config (dict, optional): Configuration specifying which losses to use.
    - print_losses (bool): Whether to print individual loss components.

    Returns:
    - float: Average loss over the validation dataset.
    """
    model.train()  # Set the model to evaluation mode
    total_loss = 0

    # Initialize lists to keep track of individual losses
    loss_classifier_list = []
    loss_box_reg_list = []
    loss_objectness_list = []
    loss_rpn_box_reg_list = []
    loss_keypoints_list = []

    with torch.no_grad():  # Disable gradient computation
        for images, targets_im in tqdm(data_loader, desc="Evaluating"):
            images = [image.to(device) for image in images]
            targets = [{k: v.clone().detach().to(device) for k, v in t.items()} for t in targets_im]

            loss_dict = model(images, targets)

            # Calculate the total loss for the current batch
            losses = 0
            if loss_config is not None:
                for key, loss in loss_dict.items():
                    if loss_config.get(key, False):
                        losses += loss
            else:
                losses = sum(loss for key, loss in loss_dict.items())

            total_loss += losses.item()

            # Collect individual losses
            if loss_dict.get('loss_classifier') is not None:
                loss_classifier_list.append(loss_dict['loss_classifier'].item())
            else:
                loss_classifier_list.append(0)

            if loss_dict.get('loss_box_reg') is not None:
                loss_box_reg_list.append(loss_dict['loss_box_reg'].item())
            else:
                loss_box_reg_list.append(0)

            if loss_dict.get('loss_objectness') is not None:
                loss_objectness_list.append(loss_dict['loss_objectness'].item())
            else:
                loss_objectness_list.append(0)

            if loss_dict.get('loss_rpn_box_reg') is not None:
                loss_rpn_box_reg_list.append(loss_dict['loss_rpn_box_reg'].item())
            else:
                loss_rpn_box_reg_list.append(0)

            if 'loss_keypoint' in loss_dict:
                loss_keypoints_list.append(loss_dict['loss_keypoint'].item())
            else:
                loss_keypoints_list.append(0)

    # Calculate average loss
    avg_loss = total_loss / len(data_loader)

    avg_loss_classifier = np.mean(loss_classifier_list)
    avg_loss_box_reg = np.mean(loss_box_reg_list)
    avg_loss_objectness = np.mean(loss_objectness_list)
    avg_loss_rpn_box_reg = np.mean(loss_rpn_box_reg_list)
    avg_loss_keypoints = np.mean(loss_keypoints_list)

    if print_losses:
        print(f"Average Loss: {avg_loss:.4f}")
        print(f"Average Classifier Loss: {avg_loss_classifier:.4f}")
        print(f"Average Box Regression Loss: {avg_loss_box_reg:.4f}")
        print(f"Average Objectness Loss: {avg_loss_objectness:.4f}")
        print(f"Average RPN Box Regression Loss: {avg_loss_rpn_box_reg:.4f}")
        print(f"Average Keypoints Loss: {avg_loss_keypoints:.4f}")

    return avg_loss


def training_model(num_epochs, model, data_loader, subset_test_loader,
                   optimizer, model_to_load=None, change_learning_rate=100, start_key=100, save_every=5,
                   parameters=None, blur_prob=0.02,
                   score_threshold=0.7, iou_threshold=0.5, early_stop_f1_score=0.97,
                   information_training='training', start_epoch=0, loss_config=None, model_type='object',
                   eval_metric='f1_score', device=torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')):

  # Set the model to training mode
  model.train()

  if loss_config is None:
     print('No loss config found, all losses will be used.')
  else:
     # Print the list of the losses that will be used
      print('The following losses will be used: ', end='')
      for key, value in loss_config.items():
          if value:
              print(key, end=", ")
      print()

  # Initialize lists to store epoch-wise average losses and other metrics
  epoch_avg_losses = []
  epoch_avg_loss_classifier = []
  epoch_avg_loss_box_reg = []
  epoch_avg_loss_objectness = []
  epoch_avg_loss_rpn_box_reg = []
  epoch_avg_loss_keypoints = []
  epoch_precision = []
  epoch_recall = []
  epoch_f1_score = []
  epoch_test_loss = []

  start_tot = time.time()
  best_metric_value = -1000
  best_epoch = 0
  best_model_state = None
  epochs_with_high_f1 = 0
  learning_rate = optimizer.param_groups[0]['lr']
  bad_test_loss_epochs = 0
  previous_test_loss = 1000

  if parameters is not None:
    batch_size, crop_prob, rotate_90_proba, h_flip_prob, v_flip_prob, max_rotate_deg, rotate_proba, keep_ratio = parameters.values()

  print(f"Let's go training {model_type} model with {num_epochs} epochs!")
  if parameters is not None:
    print(f"Learning rate: {learning_rate}, Batch size: {batch_size}, Crop prob: {crop_prob}, H flip prob: {h_flip_prob}, V flip prob: {v_flip_prob}, Max rotate deg: {max_rotate_deg}, Rotate proba: {rotate_proba}, Rotate 90 proba: {rotate_90_proba}, Keep ratio: {keep_ratio}")

  for epoch in range(num_epochs):

      if (epoch > 0 and epoch % change_learning_rate == 0) or bad_test_loss_epochs >= 2:
        learning_rate *= 0.7
        optimizer = AdamW(model.parameters(), lr=learning_rate, weight_decay=learning_rate, eps=1e-08, betas=(0.9, 0.999))
        if best_model_state is not None:
          model.load_state_dict(best_model_state)
        print(f'Learning rate changed to {learning_rate:.4} and the best epoch for now is {best_epoch}')
        bad_test_loss_epochs = 0

      if epoch > 0 and epoch == start_key:
        print("Now it's training Keypoints also")
        loss_config['loss_keypoint'] = True
        for name, param in model.named_parameters():
          if 'keypoint' in name:
              param.requires_grad = True

      model.train()
      start = time.time()
      total_loss = 0

      # Initialize lists to keep track of individual losses
      loss_classifier_list = []
      loss_box_reg_list = []
      loss_objectness_list = []
      loss_rpn_box_reg_list = []
      loss_keypoints_list = []

      # Create a tqdm progress bar
      progress_bar = tqdm(data_loader, desc=f'Epoch {epoch+1+start_epoch}')

      for images, targets_im in progress_bar:
          images = [image.to(device) for image in images]
          targets = [{k: v.clone().detach().to(device) for k, v in t.items()} for t in targets_im]

          optimizer.zero_grad()

          loss_dict = model(images, targets)
          # Inside the training loop where losses are calculated:
          losses = 0
          if loss_config is not None:
            for key, loss in loss_dict.items():
                if loss_config.get(key, False):
                    if key == 'loss_classifier':
                      loss *= 3
                    losses += loss
          else:
            losses = sum(loss for key, loss in loss_dict.items())

          # Collect individual losses
          loss_classifier_list.append(loss_dict.get('loss_classifier', torch.tensor(0)).item())
          loss_box_reg_list.append(loss_dict.get('loss_box_reg', torch.tensor(0)).item())
          loss_objectness_list.append(loss_dict.get('loss_objectness', torch.tensor(0)).item())
          loss_rpn_box_reg_list.append(loss_dict.get('loss_rpn_box_reg', torch.tensor(0)).item())
          loss_keypoints_list.append(loss_dict.get('loss_keypoint', torch.tensor(0)).item())

          losses.backward()
          optimizer.step()

          total_loss += losses.item()

          # Update the description with the current loss
          progress_bar.set_description(f'Epoch {epoch+1+start_epoch}, Loss: {losses.item():.4f}')

      # Calculate average loss
      avg_loss = total_loss / len(data_loader)

      epoch_avg_losses.append(avg_loss)
      epoch_avg_loss_classifier.append(np.mean(loss_classifier_list))
      epoch_avg_loss_box_reg.append(np.mean(loss_box_reg_list))
      epoch_avg_loss_objectness.append(np.mean(loss_objectness_list))
      epoch_avg_loss_rpn_box_reg.append(np.mean(loss_rpn_box_reg_list))
      epoch_avg_loss_keypoints.append(np.mean(loss_keypoints_list))

      # Evaluate the model on the test set
      if eval_metric == 'loss':
        labels_precision, precision, recall, f1_score, key_accuracy, reverted_accuracy = 0, 0, 0, 0, 0, 0
        avg_test_loss = evaluate_loss(model, subset_test_loader, device, loss_config)
        print(f"Epoch {epoch+1+start_epoch}, Average Training Loss: {avg_loss:.4f}, Average Test Loss: {avg_test_loss:.4f}", end=", ")
      else:
        avg_test_loss = 0
        labels_precision, precision, recall, f1_score, key_accuracy, reverted_accuracy = main_evaluation(model, subset_test_loader, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_threshold=10, key_correction=False, model_type=model_type)
        print(f"Epoch {epoch+1+start_epoch}, Average Loss: {avg_loss:.4f}, Labels_precision: {labels_precision:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1_score:.4f} ", end=", ")
        avg_test_loss = evaluate_loss(model, subset_test_loader, device, loss_config)
        print(f"Epoch {epoch+1+start_epoch}, Average Test Loss: {avg_test_loss:.4f}", end=", ")

      print(f"Time: {time.time() - start:.2f} [s]")

      if eval_metric == 'f1_score':
        metric_used = f1_score
      elif eval_metric == 'precision':
        metric_used = precision
      elif eval_metric == 'recall':
        metric_used = recall
      else:
        metric_used = -avg_test_loss

      # Check if this epoch's model has the best evaluation metric
      if metric_used > best_metric_value:
          best_metric_value = metric_used
          best_epoch = epoch + 1 + start_epoch
          best_model_state = copy.deepcopy(model.state_dict())

      if epoch > 0 and f1_score > early_stop_f1_score:
        epochs_with_high_f1 += 1

      epoch_precision.append(precision)
      epoch_recall.append(recall)
      epoch_f1_score.append(f1_score)
      epoch_test_loss.append(avg_test_loss)

      name_model = f"model_{type(optimizer).__name__}_{epoch+1+start_epoch}ep_{batch_size}batch_trainval_blur0{int(blur_prob*10)}_crop0{int(crop_prob*10)}_flip0{int(h_flip_prob*10)}_rotate0{int(rotate_proba*10)}_{information_training}"
      metrics_list = [epoch_avg_losses, epoch_avg_loss_classifier, epoch_avg_loss_box_reg, epoch_avg_loss_objectness, epoch_avg_loss_rpn_box_reg, epoch_avg_loss_keypoints, epoch_precision, epoch_recall, epoch_f1_score, epoch_test_loss]

      if epochs_with_high_f1 >= 1:
        torch.save(best_model_state, './models/' + name_model + '.pth')
        write_results(name_model, metrics_list, start_epoch)
        break

      if (epoch + 1 + start_epoch) % save_every == 0:
        torch.save(best_model_state, './models/' + name_model + '.pth')
        model.load_state_dict(best_model_state)
        write_results(name_model, metrics_list, start_epoch)

      if avg_test_loss > previous_test_loss:
        bad_test_loss_epochs += 1
      previous_test_loss = avg_test_loss

  print(f"\nTotal time: {(time.time() - start_tot) / 60:.2f} minutes, Best Epoch is {best_epoch} with an {eval_metric} of {best_metric_value:.4f}")

  if best_model_state:
      torch.save(best_model_state, './models/' + name_model + '.pth')
      model.load_state_dict(best_model_state)
      write_results(name_model, metrics_list, start_epoch)
      print(f"Name of the best model: {name_model}")

  return model