Spaces:
Running
Running
File size: 16,063 Bytes
615e9f1 b76c717 615e9f1 ca71e96 615e9f1 ca71e96 615e9f1 b76c717 615e9f1 5950696 615e9f1 ca71e96 615e9f1 5950696 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 2da5c78 64b088f 615e9f1 64b088f 615e9f1 64b088f 42199f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 2da5c78 ca37b38 615e9f1 64b088f 615e9f1 64b088f 2da5c78 64b088f 2da5c78 64b088f 2da5c78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import copy
import numpy as np
import time
import torch
import torchvision.transforms.functional as F
import matplotlib.pyplot as plt
from modules.eval import main_evaluation
from torch.optim import SGD, AdamW
from torchvision.models.detection import keypointrcnn_resnet50_fpn
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from tqdm import tqdm
from modules.utils import write_results
def get_arrow_model(num_classes, num_keypoints=2):
"""
Configures and returns a modified Keypoint R-CNN model based on ResNet-50 with FPN, adapted for a custom number of classes and keypoints.
Parameters:
- num_classes (int): Number of classes for the model to detect, excluding the background class.
- num_keypoints (int): Number of keypoints to predict for each detected object.
Returns:
- model (torch.nn.Module): The modified Keypoint R-CNN model.
"""
# Load a model pre-trained on COCO, initialized without pre-trained weights
model = keypointrcnn_resnet50_fpn(weights=None)
# Get the number of input features for the classifier in the box predictor.
in_features = model.roi_heads.box_predictor.cls_score.in_features
# Replace the box predictor in the ROI heads with a new one, tailored to the number of classes.
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# Replace the keypoint predictor in the ROI heads with a new one, specifically designed for the desired number of keypoints.
model.roi_heads.keypoint_predictor = KeypointRCNNPredictor(512, num_keypoints)
return model
def get_faster_rcnn_model(num_classes):
"""
Configures and returns a modified Faster R-CNN model based on ResNet-50 with FPN, adapted for a custom number of classes.
Parameters:
- num_classes (int): Number of classes for the model to detect, including the background class.
Returns:
- model (torch.nn.Module): The modified Faster R-CNN model.
"""
# Load a pre-trained Faster R-CNN model
model = fasterrcnn_resnet50_fpn(weights=None)
# Get the number of input features for the classifier in the box predictor
in_features = model.roi_heads.box_predictor.cls_score.in_features
# Replace the box predictor with a new one, tailored to the number of classes (num_classes includes the background)
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
return model
def prepare_model(dict, opti, learning_rate=0.0003, model_to_load=None, model_type='object'):
"""
Prepares the model and optimizer for training.
Parameters:
- dict (dict): Dictionary of classes.
- opti (str): Optimizer type ('SGD' or 'Adam').
- learning_rate (float): Learning rate for the optimizer.
- model_to_load (str, optional): Name of the model to load.
- model_type (str): Type of model to prepare ('object' or 'arrow').
Returns:
- model (torch.nn.Module): The prepared model.
- optimizer (torch.optim.Optimizer): The configured optimizer.
- device (torch.device): The device (CPU or CUDA) on which to perform training.
"""
# Adjusted to pass the class_dict directly
if model_type == 'object':
model = get_faster_rcnn_model(len(dict))
elif model_type == 'arrow':
model = get_arrow_model(len(dict), 2)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Load the model weights
if model_to_load:
model.load_state_dict(torch.load(model_to_load + '.pth', map_location=device))
print(f"Model '{model_to_load}' loaded")
model.to(device)
if opti == 'SGD':
optimizer = SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.0001)
elif opti == 'Adam':
optimizer = AdamW(model.parameters(), lr=learning_rate, weight_decay=0.001, eps=1e-08, betas=(0.9, 0.999))
else:
print('Optimizer not found')
return model, optimizer, device
def evaluate_loss(model, data_loader, device, loss_config=None, print_losses=False):
"""
Evaluate the loss of the model on a validation dataset.
Parameters:
- model (torch.nn.Module): The model to evaluate.
- data_loader (torch.utils.data.DataLoader): DataLoader for the validation dataset.
- device (torch.device): Device to perform evaluation on.
- loss_config (dict, optional): Configuration specifying which losses to use.
- print_losses (bool): Whether to print individual loss components.
Returns:
- float: Average loss over the validation dataset.
"""
model.train() # Set the model to evaluation mode
total_loss = 0
# Initialize lists to keep track of individual losses
loss_classifier_list = []
loss_box_reg_list = []
loss_objectness_list = []
loss_rpn_box_reg_list = []
loss_keypoints_list = []
with torch.no_grad(): # Disable gradient computation
for images, targets_im in tqdm(data_loader, desc="Evaluating"):
images = [image.to(device) for image in images]
targets = [{k: v.clone().detach().to(device) for k, v in t.items()} for t in targets_im]
loss_dict = model(images, targets)
# Calculate the total loss for the current batch
losses = 0
if loss_config is not None:
for key, loss in loss_dict.items():
if loss_config.get(key, False):
losses += loss
else:
losses = sum(loss for key, loss in loss_dict.items())
total_loss += losses.item()
# Collect individual losses
if loss_dict.get('loss_classifier') is not None:
loss_classifier_list.append(loss_dict['loss_classifier'].item())
else:
loss_classifier_list.append(0)
if loss_dict.get('loss_box_reg') is not None:
loss_box_reg_list.append(loss_dict['loss_box_reg'].item())
else:
loss_box_reg_list.append(0)
if loss_dict.get('loss_objectness') is not None:
loss_objectness_list.append(loss_dict['loss_objectness'].item())
else:
loss_objectness_list.append(0)
if loss_dict.get('loss_rpn_box_reg') is not None:
loss_rpn_box_reg_list.append(loss_dict['loss_rpn_box_reg'].item())
else:
loss_rpn_box_reg_list.append(0)
if 'loss_keypoint' in loss_dict:
loss_keypoints_list.append(loss_dict['loss_keypoint'].item())
else:
loss_keypoints_list.append(0)
# Calculate average loss
avg_loss = total_loss / len(data_loader)
avg_loss_classifier = np.mean(loss_classifier_list)
avg_loss_box_reg = np.mean(loss_box_reg_list)
avg_loss_objectness = np.mean(loss_objectness_list)
avg_loss_rpn_box_reg = np.mean(loss_rpn_box_reg_list)
avg_loss_keypoints = np.mean(loss_keypoints_list)
if print_losses:
print(f"Average Loss: {avg_loss:.4f}")
print(f"Average Classifier Loss: {avg_loss_classifier:.4f}")
print(f"Average Box Regression Loss: {avg_loss_box_reg:.4f}")
print(f"Average Objectness Loss: {avg_loss_objectness:.4f}")
print(f"Average RPN Box Regression Loss: {avg_loss_rpn_box_reg:.4f}")
print(f"Average Keypoints Loss: {avg_loss_keypoints:.4f}")
return avg_loss
def training_model(num_epochs, model, data_loader, subset_test_loader,
optimizer, model_to_load=None, change_learning_rate=100, start_key=100, save_every=5,
parameters=None, blur_prob=0.02,
score_threshold=0.7, iou_threshold=0.5, early_stop_f1_score=0.97,
information_training='training', start_epoch=0, loss_config=None, model_type='object',
eval_metric='f1_score', device=torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')):
# Set the model to training mode
model.train()
if loss_config is None:
print('No loss config found, all losses will be used.')
else:
# Print the list of the losses that will be used
print('The following losses will be used: ', end='')
for key, value in loss_config.items():
if value:
print(key, end=", ")
print()
# Initialize lists to store epoch-wise average losses and other metrics
epoch_avg_losses = []
epoch_avg_loss_classifier = []
epoch_avg_loss_box_reg = []
epoch_avg_loss_objectness = []
epoch_avg_loss_rpn_box_reg = []
epoch_avg_loss_keypoints = []
epoch_precision = []
epoch_recall = []
epoch_f1_score = []
epoch_test_loss = []
start_tot = time.time()
best_metric_value = -1000
best_epoch = 0
best_model_state = None
epochs_with_high_f1 = 0
learning_rate = optimizer.param_groups[0]['lr']
bad_test_loss_epochs = 0
previous_test_loss = 1000
if parameters is not None:
batch_size, crop_prob, rotate_90_proba, h_flip_prob, v_flip_prob, max_rotate_deg, rotate_proba, keep_ratio = parameters.values()
print(f"Let's go training {model_type} model with {num_epochs} epochs!")
if parameters is not None:
print(f"Learning rate: {learning_rate}, Batch size: {batch_size}, Crop prob: {crop_prob}, H flip prob: {h_flip_prob}, V flip prob: {v_flip_prob}, Max rotate deg: {max_rotate_deg}, Rotate proba: {rotate_proba}, Rotate 90 proba: {rotate_90_proba}, Keep ratio: {keep_ratio}")
for epoch in range(num_epochs):
if (epoch > 0 and epoch % change_learning_rate == 0) or bad_test_loss_epochs >= 2:
learning_rate *= 0.7
optimizer = AdamW(model.parameters(), lr=learning_rate, weight_decay=learning_rate, eps=1e-08, betas=(0.9, 0.999))
if best_model_state is not None:
model.load_state_dict(best_model_state)
print(f'Learning rate changed to {learning_rate:.4} and the best epoch for now is {best_epoch}')
bad_test_loss_epochs = 0
if epoch > 0 and epoch == start_key:
print("Now it's training Keypoints also")
loss_config['loss_keypoint'] = True
for name, param in model.named_parameters():
if 'keypoint' in name:
param.requires_grad = True
model.train()
start = time.time()
total_loss = 0
# Initialize lists to keep track of individual losses
loss_classifier_list = []
loss_box_reg_list = []
loss_objectness_list = []
loss_rpn_box_reg_list = []
loss_keypoints_list = []
# Create a tqdm progress bar
progress_bar = tqdm(data_loader, desc=f'Epoch {epoch+1+start_epoch}')
for images, targets_im in progress_bar:
images = [image.to(device) for image in images]
targets = [{k: v.clone().detach().to(device) for k, v in t.items()} for t in targets_im]
optimizer.zero_grad()
loss_dict = model(images, targets)
# Inside the training loop where losses are calculated:
losses = 0
if loss_config is not None:
for key, loss in loss_dict.items():
if loss_config.get(key, False):
if key == 'loss_classifier':
loss *= 3
losses += loss
else:
losses = sum(loss for key, loss in loss_dict.items())
# Collect individual losses
loss_classifier_list.append(loss_dict.get('loss_classifier', torch.tensor(0)).item())
loss_box_reg_list.append(loss_dict.get('loss_box_reg', torch.tensor(0)).item())
loss_objectness_list.append(loss_dict.get('loss_objectness', torch.tensor(0)).item())
loss_rpn_box_reg_list.append(loss_dict.get('loss_rpn_box_reg', torch.tensor(0)).item())
loss_keypoints_list.append(loss_dict.get('loss_keypoint', torch.tensor(0)).item())
losses.backward()
optimizer.step()
total_loss += losses.item()
# Update the description with the current loss
progress_bar.set_description(f'Epoch {epoch+1+start_epoch}, Loss: {losses.item():.4f}')
# Calculate average loss
avg_loss = total_loss / len(data_loader)
epoch_avg_losses.append(avg_loss)
epoch_avg_loss_classifier.append(np.mean(loss_classifier_list))
epoch_avg_loss_box_reg.append(np.mean(loss_box_reg_list))
epoch_avg_loss_objectness.append(np.mean(loss_objectness_list))
epoch_avg_loss_rpn_box_reg.append(np.mean(loss_rpn_box_reg_list))
epoch_avg_loss_keypoints.append(np.mean(loss_keypoints_list))
# Evaluate the model on the test set
if eval_metric == 'loss':
labels_precision, precision, recall, f1_score, key_accuracy, reverted_accuracy = 0, 0, 0, 0, 0, 0
avg_test_loss = evaluate_loss(model, subset_test_loader, device, loss_config)
print(f"Epoch {epoch+1+start_epoch}, Average Training Loss: {avg_loss:.4f}, Average Test Loss: {avg_test_loss:.4f}", end=", ")
else:
avg_test_loss = 0
labels_precision, precision, recall, f1_score, key_accuracy, reverted_accuracy = main_evaluation(model, subset_test_loader, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_threshold=10, key_correction=False, model_type=model_type)
print(f"Epoch {epoch+1+start_epoch}, Average Loss: {avg_loss:.4f}, Labels_precision: {labels_precision:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1_score:.4f} ", end=", ")
avg_test_loss = evaluate_loss(model, subset_test_loader, device, loss_config)
print(f"Epoch {epoch+1+start_epoch}, Average Test Loss: {avg_test_loss:.4f}", end=", ")
print(f"Time: {time.time() - start:.2f} [s]")
if eval_metric == 'f1_score':
metric_used = f1_score
elif eval_metric == 'precision':
metric_used = precision
elif eval_metric == 'recall':
metric_used = recall
else:
metric_used = -avg_test_loss
# Check if this epoch's model has the best evaluation metric
if metric_used > best_metric_value:
best_metric_value = metric_used
best_epoch = epoch + 1 + start_epoch
best_model_state = copy.deepcopy(model.state_dict())
if epoch > 0 and f1_score > early_stop_f1_score:
epochs_with_high_f1 += 1
epoch_precision.append(precision)
epoch_recall.append(recall)
epoch_f1_score.append(f1_score)
epoch_test_loss.append(avg_test_loss)
name_model = f"model_{type(optimizer).__name__}_{epoch+1+start_epoch}ep_{batch_size}batch_trainval_blur0{int(blur_prob*10)}_crop0{int(crop_prob*10)}_flip0{int(h_flip_prob*10)}_rotate0{int(rotate_proba*10)}_{information_training}"
metrics_list = [epoch_avg_losses, epoch_avg_loss_classifier, epoch_avg_loss_box_reg, epoch_avg_loss_objectness, epoch_avg_loss_rpn_box_reg, epoch_avg_loss_keypoints, epoch_precision, epoch_recall, epoch_f1_score, epoch_test_loss]
if epochs_with_high_f1 >= 1:
torch.save(best_model_state, './models/' + name_model + '.pth')
write_results(name_model, metrics_list, start_epoch)
break
if (epoch + 1 + start_epoch) % save_every == 0:
torch.save(best_model_state, './models/' + name_model + '.pth')
model.load_state_dict(best_model_state)
write_results(name_model, metrics_list, start_epoch)
if avg_test_loss > previous_test_loss:
bad_test_loss_epochs += 1
previous_test_loss = avg_test_loss
print(f"\nTotal time: {(time.time() - start_tot) / 60:.2f} minutes, Best Epoch is {best_epoch} with an {eval_metric} of {best_metric_value:.4f}")
if best_model_state:
torch.save(best_model_state, './models/' + name_model + '.pth')
model.load_state_dict(best_model_state)
write_results(name_model, metrics_list, start_epoch)
print(f"Name of the best model: {name_model}")
return model
|