Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
# Load the fine-tuned BART tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("EE21/BART-ToSSimplify") | |
model = AutoModelForSeq2SeqLM.from_pretrained("EE21/BART-ToSSimplify") | |
# Load BART-large-cnn | |
pipe = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Define the abstractive summarization function (fine-tuned BART) | |
def summarize_with_bart_ft(input_text): | |
inputs = tokenizer.encode("summarize: " + input_text, return_tensors="pt", max_length=1024, truncation=True) | |
summary_ids = model.generate(inputs, max_length=200, min_length=50, num_beams=1, early_stopping=False, length_penalty=1) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=False) | |
return summary | |
# Define the abstractive summarization function (BART-large-cnn) | |
def summarize_with_bart(input_text): | |
inputs = tokenizer.encode("summarize: " + input_text, return_tensors="pt", max_length=1024, truncation=True) | |
summary_ids = model.generate(inputs, max_length=200, min_length=50, length_penalty=2.0, num_beams=2, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary |