File size: 8,231 Bytes
c7f0cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
_base_ = [
    './psgformer_r50.py', '../_base_/datasets/psg.py',
    '../_base_/custom_runtime.py'
]

find_unused_parameters = True

custom_imports = dict(imports=[
    'openpsg.models.frameworks.psgtr', 'openpsg.models.losses.seg_losses',
    'openpsg.models.frameworks.dual_transformer',
    'openpsg.models.relation_heads.psgformer_head', 'openpsg.datasets',
    'openpsg.datasets.pipelines.loading',
    'openpsg.datasets.pipelines.rel_randomcrop',
    'openpsg.models.relation_heads.approaches.matcher', 'openpsg.utils'
],
                      allow_failed_imports=False)

dataset_type = 'PanopticSceneGraphDataset'

# HACK:
object_classes = [
    'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
    'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
    'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
    'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
    'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
    'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
    'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
    'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
    'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
    'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
    'hair drier', 'toothbrush', 'banner', 'blanket', 'bridge', 'cardboard',
    'counter', 'curtain', 'door-stuff', 'floor-wood', 'flower', 'fruit',
    'gravel', 'house', 'light', 'mirror-stuff', 'net', 'pillow', 'platform',
    'playingfield', 'railroad', 'river', 'road', 'roof', 'sand', 'sea',
    'shelf', 'snow', 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone',
    'wall-tile', 'wall-wood', 'water-other', 'window-blind', 'window-other',
    'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
    'cabinet-merged', 'table-merged', 'floor-other-merged', 'pavement-merged',
    'mountain-merged', 'grass-merged', 'dirt-merged', 'paper-merged',
    'food-other-merged', 'building-other-merged', 'rock-merged',
    'wall-other-merged', 'rug-merged'
]

predicate_classes = [
    'over',
    'in front of',
    'beside',
    'on',
    'in',
    'attached to',
    'hanging from',
    'on back of',
    'falling off',
    'going down',
    'painted on',
    'walking on',
    'running on',
    'crossing',
    'standing on',
    'lying on',
    'sitting on',
    'flying over',
    'jumping over',
    'jumping from',
    'wearing',
    'holding',
    'carrying',
    'looking at',
    'guiding',
    'kissing',
    'eating',
    'drinking',
    'feeding',
    'biting',
    'catching',
    'picking',
    'playing with',
    'chasing',
    'climbing',
    'cleaning',
    'playing',
    'touching',
    'pushing',
    'pulling',
    'opening',
    'cooking',
    'talking to',
    'throwing',
    'slicing',
    'driving',
    'riding',
    'parked on',
    'driving on',
    'about to hit',
    'kicking',
    'swinging',
    'entering',
    'exiting',
    'enclosing',
    'leaning on',
]

model = dict(bbox_head=dict(
    num_classes=len(object_classes),
    num_relations=len(predicate_classes),
    object_classes=object_classes,
    predicate_classes=predicate_classes,
    num_obj_query=100,
    num_rel_query=100,
), )

img_norm_cfg = dict(mean=[123.675, 116.28, 103.53],
                    std=[58.395, 57.12, 57.375],
                    to_rgb=True)
# train_pipeline, NOTE the img_scale and the Pad's size_divisor is different
# from the default setting in mmdet.
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadPanopticSceneGraphAnnotations',
         with_bbox=True,
         with_rel=True,
         with_mask=True,
         with_seg=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(
        type='AutoAugment',
        policies=[
            [
                dict(type='Resize',
                     img_scale=[(480, 1333), (512, 1333), (544, 1333),
                                (576, 1333), (608, 1333), (640, 1333),
                                (672, 1333), (704, 1333), (736, 1333),
                                (768, 1333), (800, 1333)],
                     multiscale_mode='value',
                     keep_ratio=True)
            ],
            [
                dict(type='Resize',
                     img_scale=[(400, 1333), (500, 1333), (600, 1333)],
                     multiscale_mode='value',
                     keep_ratio=True),
                dict(type='RelRandomCrop',
                     crop_type='absolute_range',
                     crop_size=(384, 600),
                     allow_negative_crop=False),  # no empty relations
                dict(type='Resize',
                     img_scale=[(480, 1333), (512, 1333), (544, 1333),
                                (576, 1333), (608, 1333), (640, 1333),
                                (672, 1333), (704, 1333), (736, 1333),
                                (768, 1333), (800, 1333)],
                     multiscale_mode='value',
                     override=True,
                     keep_ratio=True)
            ]
        ]),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=1),
    dict(type='RelsFormatBundle'),
    dict(type='Collect',
         keys=['img', 'gt_bboxes', 'gt_labels', 'gt_rels', 'gt_masks'])
]
# test_pipeline, NOTE the Pad's size_divisor is different from the default
# setting (size_divisor=32). While there is little effect on the performance
# whether we use the default setting or use size_divisor=1.
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadSceneGraphAnnotations', with_bbox=True, with_rel=True),
    dict(type='MultiScaleFlipAug',
         img_scale=(1333, 800),
         flip=False,
         transforms=[
             dict(type='Resize', keep_ratio=True),
             dict(type='RandomFlip'),
             dict(type='Normalize', **img_norm_cfg),
             dict(type='Pad', size_divisor=1),
             dict(type='ImageToTensor', keys=['img']),
             dict(type='ToTensor', keys=['gt_bboxes', 'gt_labels']),
             dict(type='ToDataContainer',
                  fields=(dict(key='gt_bboxes'), dict(key='gt_labels'))),
             dict(type='Collect', keys=['img']),
         ])
]

evaluation = dict(
    interval=1,
    metric='sgdet',
    relation_mode=True,
    classwise=True,
    iou_thrs=0.5,
    detection_method='pan_seg',
)

data = dict(samples_per_gpu=1,
            workers_per_gpu=2,
            train=dict(pipeline=train_pipeline),
            val=dict(pipeline=test_pipeline),
            test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(
    type='AdamW',
    lr=0.001,
    weight_decay=0.0001,
    paramwise_cfg=dict(
        custom_keys={
            'backbone': dict(lr_mult=0.1, decay_mult=1.0),
            'transformer.encoder': dict(lr_mult=0.1, decay_mult=1.0),
            'transformer.decoder1': dict(lr_mult=0.1, decay_mult=1.0),
            'obj_query_embed': dict(lr_mult=0.1, decay_mult=1.0),
            'input_proj': dict(lr_mult=0.1, decay_mult=1.0),
            'class_embed': dict(lr_mult=0.1, decay_mult=1.0),
            'box_embed': dict(lr_mult=0.1, decay_mult=1.0),
            'bbox_attention': dict(lr_mult=0.1, decay_mult=1.0),
            'mask_head': dict(lr_mult=0.1, decay_mult=1.0),
        }))

optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))

# learning policy
lr_config = dict(policy='step', step=40)
runner = dict(type='EpochBasedRunner', max_epochs=60)

project_name = 'psgformer'
expt_name = 'psgformer_r50_psg'
work_dir = f'./work_dirs/{expt_name}'
checkpoint_config = dict(interval=1, max_keep_ckpts=15)

log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(
            type='WandbLoggerHook',
            init_kwargs=dict(
                project=project_name,
                name=expt_name,
            ),
        )
    ],
)

load_from = './work_dirs/checkpoints/detr4psgformer_r50.pth'