Spaces:
Running
Running
DrishtiSharma
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import sqlite3
|
4 |
+
import os
|
5 |
+
from crewai import Agent, Crew, Process, Task
|
6 |
+
from crewai.tools import tool
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain_openai import ChatOpenAI
|
9 |
+
from langchain_community.tools.sql_database.tool import (
|
10 |
+
InfoSQLDatabaseTool,
|
11 |
+
ListSQLDatabaseTool,
|
12 |
+
QuerySQLDataBaseTool,
|
13 |
+
)
|
14 |
+
from langchain_community.utilities.sql_database import SQLDatabase
|
15 |
+
from datasets import load_dataset
|
16 |
+
import tempfile
|
17 |
+
|
18 |
+
st.title("Blah App")
|
19 |
+
st.write("Analyze datasets using natural language queries.")
|
20 |
+
|
21 |
+
def initialize_llm(model_choice):
|
22 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
23 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
24 |
+
|
25 |
+
if model_choice == "llama-3.3-70b":
|
26 |
+
if not groq_api_key:
|
27 |
+
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
|
28 |
+
return None
|
29 |
+
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
|
30 |
+
elif model_choice == "GPT-4o":
|
31 |
+
if not openai_api_key:
|
32 |
+
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
|
33 |
+
return None
|
34 |
+
return ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
|
35 |
+
|
36 |
+
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
37 |
+
llm = initialize_llm(model_choice)
|
38 |
+
|
39 |
+
def load_dataset_into_session():
|
40 |
+
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
41 |
+
if input_option == "Use Hugging Face Dataset":
|
42 |
+
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
|
43 |
+
if st.button("Load Dataset"):
|
44 |
+
try:
|
45 |
+
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
|
46 |
+
st.session_state.df = pd.DataFrame(dataset)
|
47 |
+
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
48 |
+
st.dataframe(st.session_state.df.head(10))
|
49 |
+
except Exception as e:
|
50 |
+
st.error(f"Error: {e}")
|
51 |
+
elif input_option == "Upload CSV File":
|
52 |
+
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
53 |
+
if uploaded_file:
|
54 |
+
st.session_state.df = pd.read_csv(uploaded_file)
|
55 |
+
st.success("File uploaded successfully!")
|
56 |
+
st.dataframe(st.session_state.df.head(10))
|
57 |
+
|
58 |
+
if "df" not in st.session_state:
|
59 |
+
st.session_state.df = None
|
60 |
+
load_dataset_into_session()
|
61 |
+
|
62 |
+
def initialize_database(df):
|
63 |
+
temp_dir = tempfile.TemporaryDirectory()
|
64 |
+
db_path = os.path.join(temp_dir.name, "patent_data.db")
|
65 |
+
connection = sqlite3.connect(db_path)
|
66 |
+
df.to_sql("patents", connection, if_exists="replace", index=False)
|
67 |
+
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
68 |
+
return db, temp_dir
|
69 |
+
|
70 |
+
def create_sql_tools(db):
|
71 |
+
@tool("list_tables")
|
72 |
+
def list_tables() -> str:
|
73 |
+
"""List all tables in the patent database."""
|
74 |
+
return ListSQLDatabaseTool(db=db).invoke("")
|
75 |
+
|
76 |
+
@tool("tables_schema")
|
77 |
+
def tables_schema(tables: str) -> str:
|
78 |
+
"""Get schema and sample rows for given tables."""
|
79 |
+
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
80 |
+
|
81 |
+
@tool("execute_sql")
|
82 |
+
def execute_sql(sql_query: str) -> str:
|
83 |
+
"""Execute a SQL query against the patent database."""
|
84 |
+
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
85 |
+
|
86 |
+
return list_tables, tables_schema, execute_sql
|
87 |
+
|
88 |
+
def initialize_agents(llm, tools):
|
89 |
+
list_tables, tables_schema, execute_sql = tools
|
90 |
+
|
91 |
+
sql_agent = Agent(
|
92 |
+
role="Patent Data Analyst",
|
93 |
+
goal="Extract patent data using optimized SQL queries.",
|
94 |
+
backstory="Expert in optimized SQL for patent databases.",
|
95 |
+
llm=llm,
|
96 |
+
tools=[list_tables, tables_schema, execute_sql],
|
97 |
+
)
|
98 |
+
|
99 |
+
analyst_agent = Agent(
|
100 |
+
role="Patent Data Analyst",
|
101 |
+
goal="Analyze the data and produce insights.",
|
102 |
+
backstory="Data analyst identifying trends.",
|
103 |
+
llm=llm,
|
104 |
+
)
|
105 |
+
|
106 |
+
writer_agent = Agent(
|
107 |
+
role="Patent Report Writer",
|
108 |
+
goal="Summarize patent insights into a report.",
|
109 |
+
backstory="Expert in clear, concise reporting.",
|
110 |
+
llm=llm,
|
111 |
+
)
|
112 |
+
|
113 |
+
return sql_agent, analyst_agent, writer_agent
|
114 |
+
|
115 |
+
def setup_crew(sql_agent, analyst_agent, writer_agent):
|
116 |
+
extract_task = Task(
|
117 |
+
description="Extract patents related to the query: {query}.",
|
118 |
+
expected_output="Patent data matching the query.",
|
119 |
+
agent=sql_agent,
|
120 |
+
)
|
121 |
+
|
122 |
+
analyze_task = Task(
|
123 |
+
description="Analyze the extracted patent data.",
|
124 |
+
expected_output="Analysis text summarizing findings.",
|
125 |
+
agent=analyst_agent,
|
126 |
+
context=[extract_task],
|
127 |
+
)
|
128 |
+
|
129 |
+
report_task = Task(
|
130 |
+
description="Summarize analysis into a report.",
|
131 |
+
expected_output="Markdown report of insights.",
|
132 |
+
agent=writer_agent,
|
133 |
+
context=[analyze_task],
|
134 |
+
)
|
135 |
+
|
136 |
+
return Crew(
|
137 |
+
agents=[sql_agent, analyst_agent, writer_agent],
|
138 |
+
tasks=[extract_task, analyze_task, report_task],
|
139 |
+
process=Process.sequential,
|
140 |
+
verbose=True,
|
141 |
+
)
|
142 |
+
|
143 |
+
if st.session_state.df is not None:
|
144 |
+
db, temp_dir = initialize_database(st.session_state.df)
|
145 |
+
tools = create_sql_tools(db)
|
146 |
+
sql_agent, analyst_agent, writer_agent = initialize_agents(llm, tools)
|
147 |
+
crew = setup_crew(sql_agent, analyst_agent, writer_agent)
|
148 |
+
|
149 |
+
query = st.text_area("Enter Patent Analysis Query:", value="How many patents related to Machine Learning were filed after 2016?")
|
150 |
+
if st.button("Submit Query"):
|
151 |
+
if query.strip():
|
152 |
+
with st.spinner("Processing your query..."):
|
153 |
+
result = crew.kickoff(inputs={"query": query})
|
154 |
+
st.markdown("### 📊 Patent Analysis Report")
|
155 |
+
st.markdown(result)
|
156 |
+
else:
|
157 |
+
st.warning("Please enter a valid query.")
|
158 |
+
else:
|
159 |
+
st.info("Please load a patent dataset to proceed.")
|