import streamlit as st import pandas as pd import sqlite3 import os import json from pathlib import Path from datetime import datetime, timezone from crewai import Agent, Crew, Process, Task from crewai_tools import tool from langchain_groq import ChatGroq from langchain.schema.output import LLMResult from langchain_core.callbacks.base import BaseCallbackHandler from langchain_community.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) from langchain_community.utilities.sql_database import SQLDatabase from datasets import load_dataset import tempfile # Environment setup os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") # LLM Callback Logger class LLMCallbackHandler(BaseCallbackHandler): def __init__(self, log_path: Path): self.log_path = log_path def on_llm_start(self, serialized, prompts, **kwargs): with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n") def on_llm_end(self, response: LLMResult, **kwargs): generation = response.generations[-1][-1].message.content with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n") # Initialize the LLM llm = ChatGroq( temperature=0, model_name="mixtral-8x7b-32768", callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))], ) st.title("SQL-RAG Using CrewAI 🚀") st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.") # Input Options input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) df = None if input_option == "Use Hugging Face Dataset": dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries") if st.button("Load Dataset"): try: with st.spinner("Loading Hugging Face dataset..."): dataset = load_dataset(dataset_name, split="train") df = pd.DataFrame(dataset) st.success(f"Dataset '{dataset_name}' loaded successfully!") st.dataframe(df.head()) except Exception as e: st.error(f"Error loading dataset: {e}") else: uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) if uploaded_file: df = pd.read_csv(uploaded_file) st.success("File uploaded successfully!") st.dataframe(df.head()) # SQL-RAG Analysis if df is not None: temp_dir = tempfile.TemporaryDirectory() db_path = os.path.join(temp_dir.name, "data.db") connection = sqlite3.connect(db_path) df.to_sql("salaries", connection, if_exists="replace", index=False) db = SQLDatabase.from_uri(f"sqlite:///{db_path}") # Tools with proper docstrings @tool("list_tables") def list_tables() -> str: """List all tables in the SQLite database.""" return ListSQLDatabaseTool(db=db).invoke("") @tool("tables_schema") def tables_schema(tables: str) -> str: """ Get the schema and sample rows for specific tables in the database. Input: Comma-separated table names. Example: 'salaries' """ return InfoSQLDatabaseTool(db=db).invoke(tables) @tool("execute_sql") def execute_sql(sql_query: str) -> str: """ Execute a valid SQL query on the database and return the results. Input: A SQL query string. Example: 'SELECT * FROM salaries LIMIT 5;' """ return QuerySQLDataBaseTool(db=db).invoke(sql_query) @tool("check_sql") def check_sql(sql_query: str) -> str: """ Check the validity of a SQL query before execution. Input: A SQL query string. Example: 'SELECT salary FROM salaries WHERE salary > 10000;' """ return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) # Agents sql_dev = Agent( role="Database Developer", goal="Extract relevant data by executing SQL queries.", llm=llm, tools=[list_tables, tables_schema, execute_sql, check_sql], ) data_analyst = Agent( role="Data Analyst", goal="Analyze the extracted data and generate detailed insights.", llm=llm, ) report_writer = Agent( role="Report Writer", goal="Summarize the analysis into an executive report.", llm=llm, ) # Tasks extract_data = Task( description="Extract data for the query: {query}.", expected_output="Database query results.", agent=sql_dev, ) analyze_data = Task( description="Analyze the query results for: {query}.", expected_output="Analysis report.", agent=data_analyst, context=[extract_data], ) write_report = Task( description="Summarize the analysis into an executive summary.", expected_output="Markdown-formatted report.", agent=report_writer, context=[analyze_data], ) crew = Crew( agents=[sql_dev, data_analyst, report_writer], tasks=[extract_data, analyze_data, write_report], process=Process.sequential, verbose=2, ) query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary by experience level?'") if st.button("Submit Query"): with st.spinner("Processing your query with CrewAI..."): inputs = {"query": query} result = crew.kickoff(inputs=inputs) st.markdown("### Analysis Report:") st.markdown(result) temp_dir.cleanup() else: st.info("Load a dataset to proceed.")