DrishtiSharma commited on
Commit
c765b68
Β·
verified Β·
1 Parent(s): 2eb7a40

Create fixed_ds_display_issue.py

Browse files
Files changed (1) hide show
  1. mylab/fixed_ds_display_issue.py +193 -0
mylab/fixed_ds_display_issue.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import sqlite3
4
+ import os
5
+ import json
6
+ from pathlib import Path
7
+ import plotly.express as px
8
+ from datetime import datetime, timezone
9
+ from crewai import Agent, Crew, Process, Task
10
+ from crewai.tools import tool
11
+ from langchain_groq import ChatGroq
12
+ from langchain_openai import ChatOpenAI
13
+ from langchain.schema.output import LLMResult
14
+ from langchain_community.tools.sql_database.tool import (
15
+ InfoSQLDatabaseTool,
16
+ ListSQLDatabaseTool,
17
+ QuerySQLCheckerTool,
18
+ QuerySQLDataBaseTool,
19
+ )
20
+ from langchain_community.utilities.sql_database import SQLDatabase
21
+ from datasets import load_dataset
22
+ import tempfile
23
+
24
+ st.title("SQL-RAG Using CrewAI πŸš€")
25
+ st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
26
+
27
+ # Initialize LLM
28
+ llm = None
29
+
30
+ # Model Selection
31
+ model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
32
+
33
+ # API Key Validation and LLM Initialization
34
+ groq_api_key = os.getenv("GROQ_API_KEY")
35
+ openai_api_key = os.getenv("OPENAI_API_KEY")
36
+
37
+ if model_choice == "llama-3.3-70b":
38
+ if not groq_api_key:
39
+ st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
40
+ llm = None
41
+ else:
42
+ llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
43
+ elif model_choice == "GPT-4o":
44
+ if not openai_api_key:
45
+ st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
46
+ llm = None
47
+ else:
48
+ llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
49
+
50
+ # Initialize session state for data persistence
51
+ if "df" not in st.session_state:
52
+ st.session_state.df = None
53
+
54
+ # Dataset Input
55
+ input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
56
+
57
+ if input_option == "Use Hugging Face Dataset":
58
+ dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
59
+ if st.button("Load Dataset"):
60
+ try:
61
+ with st.spinner("Loading dataset..."):
62
+ dataset = load_dataset(dataset_name, split="train")
63
+ st.session_state.df = pd.DataFrame(dataset)
64
+ st.success(f"Dataset '{dataset_name}' loaded successfully!")
65
+ except Exception as e:
66
+ st.error(f"Error: {e}")
67
+
68
+ elif input_option == "Upload CSV File":
69
+ uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
70
+ if uploaded_file:
71
+ try:
72
+ st.session_state.df = pd.read_csv(uploaded_file)
73
+ st.success("File uploaded successfully!")
74
+ except Exception as e:
75
+ st.error(f"Error loading file: {e}")
76
+
77
+ # Display Dataset Preview
78
+ if st.session_state.df is not None:
79
+ st.subheader("πŸ“‚ Dataset Preview")
80
+ st.dataframe(st.session_state.df.head())
81
+
82
+
83
+ # SQL-RAG Analysis
84
+ if st.session_state.df is not None:
85
+ temp_dir = tempfile.TemporaryDirectory()
86
+ db_path = os.path.join(temp_dir.name, "data.db")
87
+ connection = sqlite3.connect(db_path)
88
+ st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
89
+ db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
90
+
91
+ @tool("list_tables")
92
+ def list_tables() -> str:
93
+ """List all tables in the database."""
94
+ return ListSQLDatabaseTool(db=db).invoke("")
95
+
96
+ @tool("tables_schema")
97
+ def tables_schema(tables: str) -> str:
98
+ """Get the schema and sample rows for the specified tables."""
99
+ return InfoSQLDatabaseTool(db=db).invoke(tables)
100
+
101
+ @tool("execute_sql")
102
+ def execute_sql(sql_query: str) -> str:
103
+ """Execute a SQL query against the database and return the results."""
104
+ return QuerySQLDataBaseTool(db=db).invoke(sql_query)
105
+
106
+ @tool("check_sql")
107
+ def check_sql(sql_query: str) -> str:
108
+ """Validate the SQL query syntax and structure before execution."""
109
+ return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
110
+
111
+ sql_dev = Agent(
112
+ role="Senior Database Developer",
113
+ goal="Extract data using optimized SQL queries.",
114
+ backstory="An expert in writing optimized SQL queries for complex databases.",
115
+ llm=llm,
116
+ tools=[list_tables, tables_schema, execute_sql, check_sql],
117
+ )
118
+
119
+ data_analyst = Agent(
120
+ role="Senior Data Analyst",
121
+ goal="Analyze the data and produce insights.",
122
+ backstory="A seasoned analyst who identifies trends and patterns in datasets.",
123
+ llm=llm,
124
+ )
125
+
126
+ report_writer = Agent(
127
+ role="Technical Report Writer",
128
+ goal="Summarize the insights into a clear report.",
129
+ backstory="An expert in summarizing data insights into readable reports.",
130
+ llm=llm,
131
+ )
132
+
133
+ extract_data = Task(
134
+ description="Extract data based on the query: {query}.",
135
+ expected_output="Database results matching the query.",
136
+ agent=sql_dev,
137
+ )
138
+
139
+ analyze_data = Task(
140
+ description="Analyze the extracted data for query: {query}.",
141
+ expected_output="Analysis text summarizing findings.",
142
+ agent=data_analyst,
143
+ context=[extract_data],
144
+ )
145
+
146
+ write_report = Task(
147
+ description="Summarize the analysis into an executive report.",
148
+ expected_output="Markdown report of insights.",
149
+ agent=report_writer,
150
+ context=[analyze_data],
151
+ )
152
+
153
+ crew = Crew(
154
+ agents=[sql_dev, data_analyst, report_writer],
155
+ tasks=[extract_data, analyze_data, write_report],
156
+ process=Process.sequential,
157
+ verbose=True,
158
+ )
159
+
160
+ # UI: Tabs for Query Results and General Insights
161
+ tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])
162
+
163
+ with tab1:
164
+ query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
165
+ if st.button("Submit Query"):
166
+ with st.spinner("Processing query..."):
167
+ inputs = {"query": query}
168
+ result = crew.kickoff(inputs=inputs)
169
+ st.markdown("### Analysis Report:")
170
+ st.markdown(result)
171
+
172
+ # Query-Specific Visualization
173
+ if "salary" in query.lower():
174
+ fig = px.box(st.session_state.df, x="job_title", y="salary_in_usd", title="Salary Distribution by Job Title")
175
+ st.plotly_chart(fig)
176
+
177
+ with tab2:
178
+ st.subheader("πŸ“Š Comprehensive Data Visualizations")
179
+
180
+ fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
181
+ st.plotly_chart(fig1)
182
+
183
+ fig2 = px.bar(st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
184
+ x="experience_level", y="salary_in_usd", title="Average Salary by Experience Level")
185
+ st.plotly_chart(fig2)
186
+
187
+ temp_dir.cleanup()
188
+ else:
189
+ st.info("Please load a dataset to proceed.")
190
+
191
+ with st.sidebar:
192
+ st.header("πŸ“š Reference:")
193
+ st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")