DrishtiSharma commited on
Commit
c509466
Β·
verified Β·
1 Parent(s): 109e34b

Create test.py

Browse files
Files changed (1) hide show
  1. test.py +262 -0
test.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import sqlite3
4
+ import os
5
+ import json
6
+ from pathlib import Path
7
+ import plotly.express as px
8
+ from datetime import datetime, timezone
9
+ from crewai import Agent, Crew, Process, Task
10
+ from crewai.tools import tool
11
+ from langchain_groq import ChatGroq
12
+ from langchain_openai import ChatOpenAI
13
+ from langchain.schema.output import LLMResult
14
+ from langchain_community.tools.sql_database.tool import (
15
+ InfoSQLDatabaseTool,
16
+ ListSQLDatabaseTool,
17
+ QuerySQLCheckerTool,
18
+ QuerySQLDataBaseTool,
19
+ )
20
+ from langchain_community.utilities.sql_database import SQLDatabase
21
+ from datasets import load_dataset
22
+ import tempfile
23
+
24
+ st.title("SQL-RAG Using CrewAI πŸš€")
25
+ st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
26
+
27
+ # Initialize LLM
28
+ llm = None
29
+
30
+ # Model Selection
31
+ model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
32
+
33
+ # API Key Validation and LLM Initialization
34
+ groq_api_key = os.getenv("GROQ_API_KEY")
35
+ openai_api_key = os.getenv("OPENAI_API_KEY")
36
+
37
+ if model_choice == "llama-3.3-70b":
38
+ if not groq_api_key:
39
+ st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
40
+ llm = None
41
+ else:
42
+ llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
43
+ elif model_choice == "GPT-4o":
44
+ if not openai_api_key:
45
+ st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
46
+ llm = None
47
+ else:
48
+ llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
49
+
50
+ # Initialize session state for data persistence
51
+ if "df" not in st.session_state:
52
+ st.session_state.df = None
53
+ if "show_preview" not in st.session_state:
54
+ st.session_state.show_preview = False
55
+
56
+ # Dataset Input
57
+ input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
58
+
59
+ if input_option == "Use Hugging Face Dataset":
60
+ dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
61
+ if st.button("Load Dataset"):
62
+ try:
63
+ with st.spinner("Loading dataset..."):
64
+ dataset = load_dataset(dataset_name, split="train")
65
+ st.session_state.df = pd.DataFrame(dataset)
66
+ st.session_state.show_preview = True # Show preview after loading
67
+ st.success(f"Dataset '{dataset_name}' loaded successfully!")
68
+ except Exception as e:
69
+ st.error(f"Error: {e}")
70
+
71
+ elif input_option == "Upload CSV File":
72
+ uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
73
+ if uploaded_file:
74
+ try:
75
+ st.session_state.df = pd.read_csv(uploaded_file)
76
+ st.session_state.show_preview = True # Show preview after loading
77
+ st.success("File uploaded successfully!")
78
+ except Exception as e:
79
+ st.error(f"Error loading file: {e}")
80
+
81
+ # Show Dataset Preview Only After Loading
82
+ if st.session_state.df is not None and st.session_state.show_preview:
83
+ st.subheader("πŸ“‚ Dataset Preview")
84
+ st.dataframe(st.session_state.df.head())
85
+
86
+ # SQL-RAG Analysis
87
+ if st.session_state.df is not None:
88
+ temp_dir = tempfile.TemporaryDirectory()
89
+ db_path = os.path.join(temp_dir.name, "data.db")
90
+ connection = sqlite3.connect(db_path)
91
+ st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
92
+ db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
93
+
94
+ @tool("list_tables")
95
+ def list_tables() -> str:
96
+ """List all tables in the database."""
97
+ return ListSQLDatabaseTool(db=db).invoke("")
98
+
99
+ @tool("tables_schema")
100
+ def tables_schema(tables: str) -> str:
101
+ """Get the schema and sample rows for the specified tables."""
102
+ return InfoSQLDatabaseTool(db=db).invoke(tables)
103
+
104
+ @tool("execute_sql")
105
+ def execute_sql(sql_query: str) -> str:
106
+ """Execute a SQL query against the database and return the results."""
107
+ return QuerySQLDataBaseTool(db=db).invoke(sql_query)
108
+
109
+ @tool("check_sql")
110
+ def check_sql(sql_query: str) -> str:
111
+ """Validate the SQL query syntax and structure before execution."""
112
+ return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
113
+
114
+ # Agents for SQL data extraction and analysis
115
+ sql_dev = Agent(
116
+ role="Senior Database Developer",
117
+ goal="Extract data using optimized SQL queries.",
118
+ backstory="An expert in writing optimized SQL queries for complex databases.",
119
+ llm=llm,
120
+ tools=[list_tables, tables_schema, execute_sql, check_sql],
121
+ )
122
+
123
+ data_analyst = Agent(
124
+ role="Senior Data Analyst",
125
+ goal="Analyze the data and produce insights.",
126
+ backstory="A seasoned analyst who identifies trends and patterns in datasets.",
127
+ llm=llm,
128
+ )
129
+
130
+ report_writer = Agent(
131
+ role="Technical Report Writer",
132
+ goal="Write a structured report with Introduction, Key Insights, and Analysis. DO NOT include any Conclusion or Summary.",
133
+ backstory="Specializes in detailed analytical reports without conclusions.",
134
+ llm=llm,
135
+ )
136
+
137
+ conclusion_writer = Agent(
138
+ role="Conclusion Specialist",
139
+ goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
140
+ backstory="An expert in crafting impactful and clear conclusions.",
141
+ llm=llm,
142
+ )
143
+
144
+ # Define tasks for report and conclusion
145
+ extract_data = Task(
146
+ description="Extract data based on the query: {query}.",
147
+ expected_output="Database results matching the query.",
148
+ agent=sql_dev,
149
+ )
150
+
151
+ analyze_data = Task(
152
+ description="Analyze the extracted data for query: {query}.",
153
+ expected_output="Key Insights and Analysis without any Introduction or Conclusion.",
154
+ agent=data_analyst,
155
+ context=[extract_data],
156
+ )
157
+
158
+ write_report = Task(
159
+ description="Write the analysis report with Introduction, Key Insights, and Analysis. DO NOT include any Conclusion or Summary.",
160
+ expected_output="Markdown-formatted report excluding Conclusion.",
161
+ agent=report_writer,
162
+ context=[analyze_data],
163
+ )
164
+
165
+ write_conclusion = Task(
166
+ description="Write a brief and impactful 3-5 line Conclusion summarizing only the most important insights/findings. Include the max, min, and average salary"
167
+ "and highlight the most impactful insights.",
168
+ expected_output="Markdown-formatted Conclusion/Summary section with key insights and statistics.",
169
+ agent=conclusion_writer,
170
+ context=[analyze_data],
171
+ )
172
+
173
+ # Separate Crews for report and conclusion
174
+ crew_report = Crew(
175
+ agents=[sql_dev, data_analyst, report_writer],
176
+ tasks=[extract_data, analyze_data, write_report],
177
+ process=Process.sequential,
178
+ verbose=True,
179
+ )
180
+
181
+ crew_conclusion = Crew(
182
+ agents=[data_analyst, conclusion_writer],
183
+ tasks=[write_conclusion],
184
+ process=Process.sequential,
185
+ verbose=True,
186
+ )
187
+
188
+ # Tabs for Query Results and Visualizations
189
+ tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])
190
+
191
+ # Query Insights + Visualization
192
+ with tab1:
193
+ query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
194
+ if st.button("Submit Query"):
195
+ with st.spinner("Processing query..."):
196
+ # Step 1: Generate the analysis report
197
+ report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
198
+ report_result = crew_report.kickoff(inputs=report_inputs)
199
+
200
+ # Step 2: Generate only the concise conclusion
201
+ conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
202
+ conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
203
+
204
+ # Step 3: Display the report
205
+ #st.markdown("### Analysis Report:")
206
+ st.markdown(report_result if report_result else "⚠️ No Report Generated.")
207
+
208
+ # Step 4: Generate Visualizations
209
+ visualizations = []
210
+
211
+ fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
212
+ title="Salary Distribution by Job Title")
213
+ visualizations.append(fig_salary)
214
+
215
+ fig_experience = px.bar(
216
+ st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
217
+ x="experience_level", y="salary_in_usd",
218
+ title="Average Salary by Experience Level"
219
+ )
220
+ visualizations.append(fig_experience)
221
+
222
+ fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
223
+ title="Salary Distribution by Employment Type")
224
+ visualizations.append(fig_employment)
225
+
226
+ # Step 5: Insert Visual Insights
227
+ st.markdown("#### 5. Visual Insights")
228
+ for fig in visualizations:
229
+ st.plotly_chart(fig, use_container_width=True)
230
+
231
+ # Step 6: Display Concise Conclusion
232
+ #st.markdown("#### 6. Conclusion")
233
+ st.markdown(conclusion_result if conclusion_result else "⚠️ No Conclusion Generated.")
234
+
235
+ # Full Data Visualization Tab
236
+ with tab2:
237
+ st.subheader("πŸ“Š Comprehensive Data Visualizations")
238
+
239
+ fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
240
+ st.plotly_chart(fig1)
241
+
242
+ fig2 = px.bar(
243
+ st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
244
+ x="experience_level", y="salary_in_usd",
245
+ title="Average Salary by Experience Level"
246
+ )
247
+ st.plotly_chart(fig2)
248
+
249
+ fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
250
+ title="Salary Distribution by Employment Type")
251
+ st.plotly_chart(fig3)
252
+
253
+ temp_dir.cleanup()
254
+ else:
255
+ st.info("Please load a dataset to proceed.")
256
+
257
+
258
+ # Sidebar Reference
259
+ with st.sidebar:
260
+ st.header("πŸ“š Reference:")
261
+ st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
262
+