Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,6 @@ import pandas as pd
|
|
3 |
import sqlite3
|
4 |
import os
|
5 |
import json
|
6 |
-
import tempfile
|
7 |
-
from fpdf import FPDF
|
8 |
from pathlib import Path
|
9 |
import plotly.express as px
|
10 |
from datetime import datetime, timezone
|
@@ -80,20 +78,10 @@ elif input_option == "Upload CSV File":
|
|
80 |
except Exception as e:
|
81 |
st.error(f"Error loading file: {e}")
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
return filename
|
88 |
-
|
89 |
-
def save_as_pdf(content, filename):
|
90 |
-
pdf = FPDF()
|
91 |
-
pdf.add_page()
|
92 |
-
pdf.set_font("Arial", size=12)
|
93 |
-
for line in content.split('\n'):
|
94 |
-
pdf.multi_cell(0, 10, line)
|
95 |
-
pdf.output(filename)
|
96 |
-
return filename
|
97 |
|
98 |
# SQL-RAG Analysis
|
99 |
if st.session_state.df is not None:
|
@@ -168,20 +156,21 @@ if st.session_state.df is not None:
|
|
168 |
)
|
169 |
|
170 |
write_report = Task(
|
171 |
-
description="Write the analysis report with
|
172 |
expected_output="Markdown-formatted report excluding Conclusion.",
|
173 |
agent=report_writer,
|
174 |
context=[analyze_data],
|
175 |
)
|
176 |
|
177 |
write_conclusion = Task(
|
178 |
-
description="Write a brief and impactful 3-5 line Conclusion summarizing only the most important insights/findings. Include the max, min, and average salary
|
|
|
179 |
expected_output="Markdown-formatted Conclusion/Summary section with key insights and statistics.",
|
180 |
agent=conclusion_writer,
|
181 |
context=[analyze_data],
|
182 |
)
|
183 |
|
184 |
-
# Crews for report and conclusion
|
185 |
crew_report = Crew(
|
186 |
agents=[sql_dev, data_analyst, report_writer],
|
187 |
tasks=[extract_data, analyze_data, write_report],
|
@@ -204,58 +193,71 @@ if st.session_state.df is not None:
|
|
204 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
205 |
if st.button("Submit Query"):
|
206 |
with st.spinner("Processing query..."):
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
|
221 |
-
|
222 |
-
st.
|
223 |
-
st.
|
224 |
|
225 |
# Full Data Visualization Tab
|
226 |
with tab2:
|
227 |
st.subheader("π Comprehensive Data Visualizations")
|
228 |
|
229 |
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
230 |
-
st.plotly_chart(fig1
|
231 |
-
st.caption("π Frequency of each job title in the dataset.")
|
232 |
|
233 |
-
fig2 = px.bar(
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
237 |
|
238 |
-
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
239 |
-
|
240 |
-
st.
|
241 |
-
|
242 |
-
# Restored Summary for Tab 2
|
243 |
-
tab2_content = "Comprehensive Data Visualizations:\n"
|
244 |
-
tab2_content += "- Job Title Frequency\n"
|
245 |
-
tab2_content += "- Average Salary by Experience Level\n"
|
246 |
-
tab2_content += "- Salary Distribution by Employment Type\n"
|
247 |
-
|
248 |
-
tab2_txt = save_as_txt(tab2_content, "Tab2_Visualizations.txt")
|
249 |
-
tab2_pdf = save_as_pdf(tab2_content, "Tab2_Visualizations.pdf")
|
250 |
-
st.download_button("π₯ Download Tab 2 Summary as TXT", open(tab2_txt, "rb"), file_name="Tab2_Visualizations.txt")
|
251 |
-
st.download_button("π₯ Download Tab 2 Summary as PDF", open(tab2_pdf, "rb"), file_name="Tab2_Visualizations.pdf")
|
252 |
|
253 |
temp_dir.cleanup()
|
254 |
else:
|
255 |
st.info("Please load a dataset to proceed.")
|
256 |
|
|
|
257 |
# Sidebar Reference
|
258 |
with st.sidebar:
|
259 |
st.header("π Reference:")
|
260 |
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|
261 |
|
|
|
|
3 |
import sqlite3
|
4 |
import os
|
5 |
import json
|
|
|
|
|
6 |
from pathlib import Path
|
7 |
import plotly.express as px
|
8 |
from datetime import datetime, timezone
|
|
|
78 |
except Exception as e:
|
79 |
st.error(f"Error loading file: {e}")
|
80 |
|
81 |
+
# Show Dataset Preview Only After Loading
|
82 |
+
if st.session_state.df is not None and st.session_state.show_preview:
|
83 |
+
st.subheader("π Dataset Preview")
|
84 |
+
st.dataframe(st.session_state.df.head())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# SQL-RAG Analysis
|
87 |
if st.session_state.df is not None:
|
|
|
156 |
)
|
157 |
|
158 |
write_report = Task(
|
159 |
+
description="Write the analysis report with Introduction, Key Insights, and Analysis. DO NOT include any Conclusion or Summary.",
|
160 |
expected_output="Markdown-formatted report excluding Conclusion.",
|
161 |
agent=report_writer,
|
162 |
context=[analyze_data],
|
163 |
)
|
164 |
|
165 |
write_conclusion = Task(
|
166 |
+
description="Write a brief and impactful 3-5 line Conclusion summarizing only the most important insights/findings. Include the max, min, and average salary"
|
167 |
+
"and highlight the most impactful insights.",
|
168 |
expected_output="Markdown-formatted Conclusion/Summary section with key insights and statistics.",
|
169 |
agent=conclusion_writer,
|
170 |
context=[analyze_data],
|
171 |
)
|
172 |
|
173 |
+
# Separate Crews for report and conclusion
|
174 |
crew_report = Crew(
|
175 |
agents=[sql_dev, data_analyst, report_writer],
|
176 |
tasks=[extract_data, analyze_data, write_report],
|
|
|
193 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
194 |
if st.button("Submit Query"):
|
195 |
with st.spinner("Processing query..."):
|
196 |
+
# Step 1: Generate the analysis report
|
197 |
+
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
|
198 |
+
report_result = crew_report.kickoff(inputs=report_inputs)
|
199 |
+
|
200 |
+
# Step 2: Generate only the concise conclusion
|
201 |
+
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
|
202 |
+
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
|
203 |
+
|
204 |
+
# Step 3: Display the report
|
205 |
+
#st.markdown("### Analysis Report:")
|
206 |
+
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
|
207 |
+
|
208 |
+
# Step 4: Generate Visualizations
|
209 |
+
visualizations = []
|
210 |
+
|
211 |
+
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
|
212 |
+
title="Salary Distribution by Job Title")
|
213 |
+
visualizations.append(fig_salary)
|
214 |
|
215 |
+
fig_experience = px.bar(
|
216 |
+
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
217 |
+
x="experience_level", y="salary_in_usd",
|
218 |
+
title="Average Salary by Experience Level"
|
219 |
+
)
|
220 |
+
visualizations.append(fig_experience)
|
221 |
|
222 |
+
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
223 |
+
title="Salary Distribution by Employment Type")
|
224 |
+
visualizations.append(fig_employment)
|
225 |
|
226 |
+
# Step 5: Insert Visual Insights
|
227 |
+
st.markdown("#### 5. Visual Insights")
|
228 |
+
for fig in visualizations:
|
229 |
+
st.plotly_chart(fig, use_container_width=True)
|
230 |
|
231 |
+
# Step 6: Display Concise Conclusion
|
232 |
+
#st.markdown("#### 6. Conclusion")
|
233 |
+
st.markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
234 |
|
235 |
# Full Data Visualization Tab
|
236 |
with tab2:
|
237 |
st.subheader("π Comprehensive Data Visualizations")
|
238 |
|
239 |
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
240 |
+
st.plotly_chart(fig1)
|
|
|
241 |
|
242 |
+
fig2 = px.bar(
|
243 |
+
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
244 |
+
x="experience_level", y="salary_in_usd",
|
245 |
+
title="Average Salary by Experience Level"
|
246 |
+
)
|
247 |
+
st.plotly_chart(fig2)
|
248 |
|
249 |
+
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
250 |
+
title="Salary Distribution by Employment Type")
|
251 |
+
st.plotly_chart(fig3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
temp_dir.cleanup()
|
254 |
else:
|
255 |
st.info("Please load a dataset to proceed.")
|
256 |
|
257 |
+
|
258 |
# Sidebar Reference
|
259 |
with st.sidebar:
|
260 |
st.header("π Reference:")
|
261 |
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|
262 |
|
263 |
+
|